
THÈSE

Pour obtenir le grade de

DOCTEUR DE LA
COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES
Spécialité : Informatique

Arrêté ministériel : 25 mai 2016

Présentée par

Adrien Faure

Thèse dirigée par Denis TRYSTRAM

et codirigée par Olivier RICHARD

préparée au sein du Laboratoire d’Informatique de Grenoble
dans l’École Doctorale Mathématiques, Sciences et technologies de
l’information, Informatique

Simulation avancée pour la gestion de ressources
des superordinateurs

Advanced Simulation for Resource Management

Thèse soutenue publiquement le 2 décembre 2020,
devant le jury composé de :

Georges DA COSTA
Maître de conférence, IRIT, Université de Toulouse III, France, Rapporteur

Frédéric SUTER
Directeur de Recherche, IN2P3, France, Rapporteur

Yves DENNEULIN
Professeur des universités, LIG, Grenoble INP, France, Examinateur, Président

Adrien LÈBRE
Professeur à IMT Atlantique, France, Examinateur

Pascale ROSSÉ-LAURENT
Architecte Logiciel à Atos, France, Examinateur

Olivier RICHARD
Maître de conférences, LIG, Univ. Grenoble Alpes, France, Co-Directeur de thèse

Denis TRYSTRAM
Professeur des universités, LIG, Grenoble INP, France, Directeur de thèse

„ Nothing takes the heart out of a man more than
the expectation of failure.

— Robin HOBB

Remerciements /
Acknowledgements

Je voudrais remercier, Frédéric Suter et Georges Da Costa pour leur relecture atten-
tive de mon mémoire. Écrire fut une tâche difficile et chaque remarque fut juste
et utile. Merci également à tous les membres du jury pour leur questions, et leur
regard critique sur mon travail.

Je souhaite remercier mes encadrants, Olivier Richard, Pascale Rossé-Laurent et
Denis Trystram qui, nonobstant un début mouvementé, ont réussi à m’aiguiller
grâce à leurs conseils scientifique, mais également par leurs encouragements et leur
soutien. Merci à Millian et Michael pour leur patience et leurs conseils scientifique
avec qui travailler pendant ces années fut un réel plaisir. Merci à Valentin pour toutes
ses idées folles et de m’avoir motivé à rependre le sport. Merci à Clément, Raphaël,
Salah, Stéphane, Théophile, Paul, Vincent, Sebastian, Mohammed, Danilo, Pedro,
Tristan, Achal, Léo, Saurabh pour toutes les discussions autour d’un café. Merci à
toute l’équipe Datamoris (DATAMOve et PolaRIS) où les portes des bureaux restent
ouvertes, témoignant de votre acceuil pendant ses trois années. Plus généralement,
merci à tous mes collègues du laboratoire : permanents, ingénieurs, doctorants
et stagiaires pour tous les moments conviviaux. Merci à Valérie, et Annie pour
votre aide et votre support au quotidien. Je tiens à remercier Marc, Guillaume et
Guillaume, Emmanuel, Piotr, Florent, Nicolas, Nadya et Pierre, chaque pause café
était accompagné de vos blagues et de votre bonne humeur. Merci à toute l’équipe
Slurm, et à l’équipe Runtime à Bull, pour tous les bons moments passé au café, et à
faire le tour.

Merci à Jaja pour son sens de l’humour et les grand moments de gaming. Merci à
Antoine pour son intarissable source de gentillese et de bon-sens. Merci à ma famille,
et tout particulièrement à mes parents, mon frère et mes grand-parents de m’avoir
soutenu pendant toutes ses années. Un grand merci à Calliane, qui n’a cessé de
croire en moi et qui m’a soutenu et supporté, même dans les moments difficiles.

iii

The experiments presented in this paper were carried out using the Grid’5000
testbed, supported by a scientific interest group hosted by Inria and including CNRS,
RENATER and several Universities as well as other organizations 1

The workload log from the CEA Curie system was graciously provided by Joseph
Emeras. The workload log from ANL Intrepid was graciously provided by Susan Cogh-
lan (smc@alcf.anl.gov) from ALCF at ANL and Narayan Desai (desai@mcs.anl.gov)
from MCS at ANL. It was converted to SWF and made available by Wei Tang
(wtang6@iit.edu) from Illinois Institute of Technology The workload log from the
RICC cluster was graciously provided by Motoyoshi Kurokawa (motoyosi@riken.jp).

1https://www.grid5000.fr.

iv

Abstract / Résumé

Abstract
High-Performance Computing (HPC) provides the computational power dedicated
to solving complex problems of our society. HPC computers are large scale and
distributed infrastructures composed of several thousands of computing cores. The
management of theses systems is left to unique software: the Resource and Job
Management System (RJMS). The objective of the RJMS is multiple: Managing the
physical infrastructure, and handling the user requests to access to the computing
power. The scheduling algorithm is the cornerstone of the RJMS, it decides where
and when the user’s jobs will be executed. Scheduling is a difficult problem; to man-
age large scale platforms RJMS needs to dispose of efficient yet scalable scheduling
heuristics Evaluating and testing new scheduling algorithms is crucial before releas-
ing it in production. Any failure can have a dramatic impact on the HPC platform
leading to wasted time, energy, and resources. The lack of a platform dedicated
experiments and tests compels RJMS designers and HPC center’s administrators to
use different tools and methodologies to evaluate new algorithms.

In the first part of this dissertation, we present and evaluate a new scheduling heuris-
tics with job redirection. The evaluation is done using a large simulation campaign,
it results that by redirecting jobs can improve the efficiency of the scheduling. In
the second part, we focus on and extend the tools and methodologies available to
experiment with RJMS. This part is twofold: Firstly, we propose to extend scheduling
simulations with job models to simulate network contention between jobs. Secondly,
we propose new tools that enable experiment with production RJMS without the
need for an HPC platform. This dissertation aims to broaden the experimental
landscape of tools and methodologies to experiment with RJMS and therefore help
the release in the production of new scheduling algorithms.

v

Résumé
Les superordinateurs sont des systèmes mutualisant la puissance de milliers de
coeurs de calculs dédiés à la résolution des problèmes compliqués de notre société.
Le gestionnaire de ressources est un système distribué et complexe chargé de la
gestion de ses ressources de calculs. Son rôle est multiple : Gérer la plateforme
physique et traiter les requêtes d’accès des utilisateurs au superordinateur. La pierre
angulaire du gestionnaire de ressources est son algorithme d’ordonnancement des
requêtes des utilisateurs. L’ordonnancement est un problème difficile ; pour gérer
efficacement un superordinateur le gestionnaire de ressources doit disposer d’heuris-
tiques d’ordonnancement efficaces permettant de prendre des décisions pertinentes
sur des milliers de ressources de calculs. Évaluer et tester de nouvelles heuristiques
est fondamental avant de pouvoir les utiliser dans un système en production. Toute
panne induite par une nouvelle politique peut avoir des conséquences importantes
sur la qualité de service du superordinateur. Il est ainsi nécessaire de disposer d’outils
et méthodes dédiés à l’évaluation des algorithmes d’ordonnancement.

La première partie de ce document présente un nouvel algorithm d’ordonnancement,
ainsi que son évaluation par le biais de la simulation. L’algorithme en question repose
sur la possibilité de rediriger les programmes des utilisateurs en cours d’exécution.
L’évaluation est réalisée par le biais d’une large campagne de simulation, et montre
que rediriger des programmes permet d’améliorer les performances de l’ordonnan-
cement. L’objectif principal de la seconde partie de ce document est de proposer et
développer de nouveaux outils et méthodes pour l’évaluation des gestionnaires de
ressources. Cette seconde partie est elle même divisée en deux arcs : Nous propo-
sons dans un premier temps d’étendre les techniques de simulations d’algorithmes
d’ordonnancement avec des modèles dédiés aux programmes permettant ainsi la
simulation d’interférences réseaux entre les différents programmes. Dans un second
temps, nous proposons deux nouvelles approches pour créer des expériences sur un
seul ordinateur, en se basant directement sur de vrais gestionnaires de ressources.
L’objectif de ces travaux est d’étendre le paysage expérimental des outils et métho-
dologies nécessaires à l’évaluation de nouveaux algorithmes d’ordonnancement.

vi

Contents

Abstract / Résumé v

Contents vii

1 Introduction 1

1.1 Background . 1

1.2 Resource and Job Management Systems 2

1.2.1 Scheduling Heuristics for HPC 4

1.3 RJMSs Evaluation: Workloads and Metrics 5

1.3.1 Workloads and Metrics . 6

1.3.2 Methodology for the Evaluation of RJMSs 6

1.4 Contributions . 8

2 Experimental Study of RJMS: Methods and State of the Art 11

2.1 Introduction . 11

2.2 Using RJMS Models . 14

2.3 Experiment with Real RJMSs . 17

2.3.1 Real RJMS with a Functional Platform 17

2.3.2 RJMS Hybridization . 20

2.4 Choosing the Adapted Methodology 22

2.5 Conclusion . 23

3 On-line Scheduling with Redirection for Independent Jobs 25

3.1 Introduction . 25

3.2 Definition and Notation . 26

3.3 Related Work . 27

3.4 Scheduling Parallel Jobs in HPC Environments 28

3.5 Scheduling Parallel Jobs with Redirection 29

3.5.1 General Description of the Redirection 29

3.5.2 Dealing with Parallel Jobs . 29

3.5.3 Execution . 30

3.6 Experimental Settings . 32

3.6.1 Simulation and Inputs . 32

3.6.2 The Workloads . 33

vii

3.6.3 Redirection Parameters: α and θ 34

3.6.4 Reproducibility . 35

3.7 Experimental Results . 35

3.7.1 Parameters Tuning . 35

3.7.2 Comparison to EASY Back-filling 37

3.8 Conclusion . 40

4 Scheduling Simulation with Job’s Models 43

4.1 Introduction . 43

4.2 The Batsim Approach . 45

4.2.1 SimGrid . 45

4.2.2 SimGrid Provided Models . 47

4.2.3 Batsim: Infrastructure Simulator for Resource Management . 50

4.3 Job Execution Profiles . 52

4.3.1 Profile Types . 52

4.3.2 Profiles Evaluation . 54

4.4 Conclusion . 60

5 Ptask Model Validation 63

5.1 Introduction . 63

5.2 Experiment Methodology . 64

5.3 Parallel Matrix Multiplication (PDGEMM) 64

5.3.1 PDGEMM Algorithm . 65

5.3.2 Matrix Block Subdivision . 67

5.3.3 PDGEMM Resources Consumption Behavior 67

5.4 Real Experimental Setup . 68

5.4.1 Platform and Nodes Configuration 68

5.4.2 PDGEMM and MPI Configuration 68

5.4.3 Controlled Interferences . 69

5.4.4 Monitoring . 71

5.5 Results and Data Analysis of the Real Executions 71

5.5.1 Results Analysis for Paravance 71

5.5.2 Results Analysis for Grisou . 76

5.5.3 Difference Between Grisou and Paravance 76

5.6 PDGEMM in Simulation . 79

5.6.1 SimGrid Platform, Calibration and Interference 79

5.6.2 Ptask Generation . 80

5.7 Comparison between the Ptask Model and Reality 81

5.8 Interference Analysis . 83

5.8.1 Theoretical Interference Model 84

5.8.2 Theoretical Model Calibration and Results 84

5.9 Discussion . 86

viii

5.10 Conclusion . 88
5.10.1 Ptask calibration . 88
5.10.2 Scheduling Simulations . 89

6 Study RJMS with the Emulation Approach 91
6.1 Introduction . 91
6.2 The Simunix Approach . 93

6.2.1 Project Historic . 94
6.2.2 Simunix Use Case: Slurm Emulation 95

6.3 Batsky . 96
6.4 Discussion . 99
6.5 Conclusion . 100

7 Tools for Emulation: Interception, Remote SimGrid and sgwrap 103
7.1 Introduction . 103
7.2 Interception Methods . 103
7.3 Remote SimGrid . 105

7.3.1 RSG Simulation Concepts . 105
7.3.2 Implementation Details . 106
7.3.3 Related Work . 107

7.4 C Standard Library Interceptions . 108
7.4.1 Choosing the Intercepted Functions 109
7.4.2 System Time Interception . 109
7.4.3 BSD Socket Interception . 109
7.4.4 System Process Interception 112
7.4.5 Threads Interception . 114

7.5 Conclusion . 115

8 Reproducibility of Experiments with Variations 117
8.1 Software Development Workflow and Reproducibility 118
8.2 Reproducible Software Environments with Nix 120
8.3 Related Work . 121
8.4 Discussion . 122
8.5 Conclusion . 123

9 Conclusion 125
9.1 Contributions and Future Work . 125

9.1.1 Scheduling with Job Redirection 125
9.1.2 Simulation Model with Job Resources Consumption 126
9.1.3 Experimenting with Real RJMS: Simunix and Batsky 128
9.1.4 Reproducibility of Experiments with Variation 129

A Appendix A3

ix

A.1 PDGEMM . A3
A.1.1 Nonblocking Broadcast . A3

A.2 Reproduce Experiments . A5

Bibliography A15

x

1Introduction

1.1 Background
The continuous need for computational power has stimulated a global effort to
build powerful High-Performance Computing (HPC) platforms, accommodating
thousands of cores, and this number still increases. In June 2020, the most powerful
super calculator, Fugaku, achieves its peak of performance with 513, 854.7TF lop/s
— 513, 854.7 ∗ 1016flops with more than 7 millions of cores (7, 299, 072 cores). HPC
is a field in constant evolution driven by the continuous need for performances,
leading manufacturers to incorporate always more processing cores. Traditionally,
the computing cores are distributed among independent computers referred to as
the computing nodes, connected with a dedicated high-performance network: the
interconnect. With the emergence of new hardware, such as graphics processing
unit (GPU) to accelerate the computations and IO accelerators, recent computing
platform becomes heterogeneous, in the sense that they incorporate various kinds
of resources. In the past decade, tremendous efforts have been made to, both have
efficient exploitation of the computing platforms and to cope with the issues induced
by the increasing size and complexity of platforms. More specifically these issues are
the resiliency, the energy consumption, and the data management [Don+11].

In practice, few applications use all the nodes of a cluster, instead, the resources
are shared among multiple applications. To access to the computing platform, the
end-users need to submit their applications to a Resource and Job Management
System (RJMS), which is in charge of matching the user’s requests with the available
computing power. To deliver such computing power, RJMSs are complexes and
distributed software that need, on the one hand, to schedule user requests and
allocate the computing nodes to meet the demand, and on the other hand, to perform
all the necessary operations to manage the platform, such as node monitoring and
launching the user applications. With the increasing size of the HPC platforms,
RJMSs need to be scalable to deliver always more computing power. To cope with
this issue, RJMSs leverage the fact that common HPC application requirements can
be easily expressed by a simple number of required cores for a fixed amount of time,
to use efficient and yet simple scheduling heuristics.

The emerging of a diversity of new usages and practices of the HPC platforms, such
as the apparition of large scientific datasets that need to be processed, interactive
notebooks or the training of machine learning models, along with the aforemen-
tioned heterogeneity of the computing resources, impose RJMSs to deal with more

1

complex user demands as well as a wider number of applications [Asc+18; Mer19].
Additionally, other issues and challenges have been addressed at the level of the
RJMS — the platform management level — such as managing the energy of the
computing platform [Poq17; Kas19], allocating different kinds of resources such as
Input/Output (IO) accelerators and GPUs [Bea+20], or monitoring applications to
detect potential performance issues [Eme13]. To continue to provide a good quality
of service in respect of the aforementioned evolutions RJMS source code is enhanced
to integrate new resource types, and a wide variety of scheduling algorithms or
resources management algorithms to manage next-generation platforms.

Next-generation platforms will be heterogeneous, both in the resources available
for the users and in the kind of workloads that will be imposed on it. Due to the
price of the different parts of the cluster, such as the interconnect, the number of
cores, and the number (and type) of accelerators, building a platform tailored for
a specific company is puzzling. The RJMS in charge of resource management, can
help to evaluate the appropriate platform sizing for a specific workload. For instance,
the cost of the cluster’s interconnect could be reduced for facilities that mainly use
the computing platform for data-intensive applications, the saving can be used for a
more performant data management. However, the platform performance is largely
impacted by the ability of the RJMS to efficiently allocate the resources, with poor
resources allocation, the applications of the platform can be interfering with each
other [Qia+17; Bha+13; Smi+18].

Current RJMSs need to dispose of fast and efficient heuristics to deal with a large
number of resources and user requests while dealing with more criteria. The
development of new heuristics for resources management is necessary to compel
with the production constraints of current and next-generation clusters. Releasing
new heuristics in production is complicated as any failure or performance loss may
harm the cluster’s quality of service. Hence, cluster administrators need convincing
arguments about the beneficial impact of new heuristics on their clusters.

During the evaluation of such heuristic, it appeared that proposing a convincing
evaluation is a difficult problem, it requires resources and methodologies not always
available. A part of this dissertation is dedicated to the resources and methodolo-
gies used for the evaluation of new RJMS heuristics for scheduling and resource
management.

1.2 Resource and Job Management Systems

The Resource and Job Management System (RJMS) is a middleware responsible
to manage the availability and the resource allocations of a supercomputer for the
execution of the applications. From a high-level point of view, the role of the RJMS

2 Chapter 1 Introduction

is to act as an interface between the physical platform and the users to provide the
technical requirements to use the computing resources.

Users
Job submissions RJMS

Job Scheduler
Resources manager:

monitoring, app management
User interface } ...

Computing nodes

}

File system

Figure 1.1.: Overview of a Resource and Job Management System. The users submit their
applications, called the jobs, to the RJMS. The jobs scheduler finds a number
of nodes available according to the job’s requirements and attributes a starting
date at each one of them. The resources manager manages the platform,
monitors the nodes, and controls the job’s executions

The RJMS presents the interface to use the computing resources of a cluster: the
users need to send a request to the RJMS. The request is referred to as a job and
contains information about the application requirements. In HPC, the most basic
requirements are the amount of computing power, expressed in cores, and an upper
bound on the job’s execution time to prevent failing jobs to never release their
resources. This upper bound is called the job’s walltime and is specific to HPC
systems — in case of a job’s execution exceeds its walltime, the job is killed.

The RJMS matches the user demand’s requirements to the available computing nodes,
it has to create an allocation for each job submitted. An allocation is the attribution
of a number of available resources, corresponding to the job requirements, and a
time at which the job starts its execution. Finding an allocation for each job is the
objective of the scheduling algorithm (or scheduling policy) of the RJMS described
in the next section.

The RJMS is also responsible for the successful execution of the decisions taken
by the scheduling policy on the physical platform. Thus, the RJMS is in charge
of launching the jobs on the selected nodes, killing them when it is necessary,
monitoring the computing nodes and tracking their status (availability, failures, on
use etc.). Performing these tasks is technical, leading RJMSs to be distributed
and complex software composed of thousands of lines of code — for instance, the
last Slurm version (20.02), a well established RJMS, has more than four hundred
thousands lines of code.

1.2 Resource and Job Management Systems 3

1.2.1 Scheduling Heuristics for HPC

The RJMS of the platform handles the user submissions and is in charge to allocate
the computing resources to the user’s job. The allocation is created by matching
both the user’s demand, such as a number of computing nodes and the availability
of the platform’s resources. If not enough resources are available on the computing
platform, the jobs are queued up into a waiting list until enough resources are
available. The role of the scheduling algorithm is to find a starting date for each –
valid – user’s job matching the job’s resources requirement.

All job are independents and requests a number of computing resources qj for a
certain duration called the walltime. In case the walltime is not provided by the user
the system uses a default one (usually one hour). Any job exceeding its walltime
is killed by the RJMS, and its resources become available for other jobs to execute.
The scheduler is only aware of a job at is release time rj (i.e., its submission date,
the time at which the user sends the request). The scheduler is online, it means that
it doesn’t know the future jobs and takes decisions only based on the jobs already
submitted. It is interesting to mention that the RJMS is (most of the time) not aware
of the underlying program that is executed by the user, the RJMS only provides the
required resources necessary for the job’s execution.

job j

Time

Resources

rj startj Cj

waitj

pj

wallj

qj

Figure 1.2.: Exhaustive job definition.

Figure 1.2 shows an exhaustive vision of job j. Because the walltime is an upper
limit on the job execution time, it does not necessarily match its processing time.
The scheduler only knows the actual processing time pj when the job completes (at
Cj). The grey part of the job depicts the fact that the job can complete (or crash)
before it reaches its walltime. The waiting time waitj is the time between the release
time and the beginning of its execution startj . Finally, the flow time Fj of job j is
the total time it spends on the system, Fj = waitj + pj .

4 Chapter 1 Introduction

For a set of parallel jobs, the goal of the scheduling algorithm is to provide for each
submitted job j a starting date rj with the number of required resources qj . Different
metrics, detailed in the next section, can be used to evaluate the performances of
a scheduling policy (1.3). A two-axis chart can represent the result of scheduling
policy, figure 1.3 provides such an example.

0
1

2

3

4

5

5

6

6

7

11

11
17

19

21

25
26

28

28

31

34

37

40

41

44

48

47

47

49

52

54

58

58

60

60

60

60

0

100

200

0 5000 10000 15000 20000
Time (s)

C
or

es
 (i

d)

Figure 1.3.: Example of a Gantt chart. It depicts the result a of scheduling policy. The jobs
are represented by the rectangles, the x-axis shows the time, while the y-axis
shows the set of allocated resources.

1.3 RJMSs Evaluation: Workloads and Metrics

Integrating recent work in a production RJMS is difficult, any failure or performance
loss has a high cost on the platform’s quality of service and represents a loss of
money and energy. Therefore, it becomes necessary to evaluate a new development
or a new algorithm before releasing it in production. The lack of dedicated resources
for the experiments makes the evaluation of new algorithms and developments
difficult, and the adoption of works from the state of the art remains marginal.
Alternatively, creating scheduling algorithms and scalable resources management
techniques for next-generation platforms is complicated without the platforms at
issue. To cope with this, one needs to dispose of tools and methodologies able to
help the evaluations of next-generation RJMSs.

In production mode, the users share the resources. In this situation, the peak
performance of the computing cluster is not the only relevant factor to measure
the overall platform performance, as it doesn’t reflect how the users access the
computing platform. Therefore it becomes necessary to evaluate the performances
of the RJMS in charge of sharing the resources.

1.3 RJMSs Evaluation: Workloads and Metrics 5

1.3.1 Workloads and Metrics

On a production platform the users submissions create a set of jobs that needs to be
executed on the platform, this is the workload. In other words, the workload is the
list jobs that needs to be executed on a computing platform.

The efficiency of an RJMS can be evaluated according to its ability to handle the
workload in respect of different metrics — i.e., to schedule all the jobs of the
workload, and allocate them to the resources of the computing platform. Each
metric measures a different aspect of the RJMS. Two categories of metric exist.

The user level metrics evaluate the performances of the RJMS from the user per-
spective:

• The waiting time of a job is the time that a job spends in the system, from its
submission date to the beginning of its execution.

• The slowdown (or stretch) of a job is the total time it spends on the system
(waiting time plus execution time), divided by its execution time [Fei01a].
This metric is based on the observation that a long waiting time has not the
same impact on the user’s satisfaction according to the job’s execution time. If
a job should run for a long period, it is more acceptable to wait longer before
its execution.

• The throughput of the RJMS is the number of jobs that the RJMS can process
in a period (usually one sec). It represents the reactivity of the system during
peaks of activity.

The metrics are then aggregated to be representative of the RJMS performance in
respect of the entire workload (i.e., all the jobs). For instance, the average waiting
time is defined as the sum of all the job’s waiting times divided by the number of
executed jobs.

The system-level metrics evaluate the performance of the RJMS from the platform
perspective. The utilization defines the RJMS ability to ensure a low idle time
of the nodes of the computing platform, and therefore to fill the cluster. One
can also compute different metrics, such as the total energy consumption of the
platform [Gle16].

1.3.2 Methodology for the Evaluation of RJMSs

Evaluating a new scheduling algorithm is done with experiment campaigns. An
experiment features the studied system (the RJMS), or a model of the studied system,
and reproduces the production environment in the experimental setup. However,
the evaluations of scheduling policies, using a real RJMS or a model of an RJMS,

6 Chapter 1 Introduction

rely on a common methodology: The play — or replay, in case of one uses traces of
real RJMS — of workloads.

On a production cluster, the workload is directly generated by the user submis-
sions. The RJMS performances can be evaluated using the data available on the
cluster [Eme13]. However, during experiments, the standard methodology is to
provide a workload as input. The workload is read during the experiment and each
job is individually submitted to the studied system at the appropriate time. This
methodology has good properties suitable for experiments, it is reproducible, and it
enables to compare different scenarios according to a shared input (the workload).

The two principal ways to obtain a workload suitable for experimenting are by
either generating a workload thanks to a model [LF03; TEF05; Fei15b] or by
extracting workloads from logs of production RJMS. The contributions of this work
use methodologies and models from the state of the art. The website Parallel
Workload Archive (PWA)[Fei19] regroups a collection of both generative workload
models and extracted logs from diverse production clusters. Inquisitive readers
are encouraged to read Emeras’s work [Eme13] detailing the methodologies and
implications of experiments using workload replay.

Experiment phase

Results

Data
Experiment's
job submitter

Input
workload

Studied RJMS
or

Simulator

Submit
jobs

Evaluation
phase

Figure 1.4.: Experiment methodology for RJMS using workload replay. The experiment’s
setup contains a module (or program) that submits jobs. The studied RJMS (or
simulator) receives the jobs as if they were submitted by the users. Once all
the jobs are submitted and scheduled, one can analyze the results in respect of
the desired metric(s).

Figure 1.4 shows an example of how to experiment with RJMS. In the first place, one
needs to have the studied target instantiated, such as an RJMS or a simulator (middle
square of the figure). During the experiment, one module is in charge of reading a
workload and submitting the jobs to RJMS when the time of the experiment reaches
the job’s submission date. Depending on the experiment’s context, the time may be
handled by another module (not depicted in the figure). In the case of the real time
is used, the time in the workload must be relative to the beginning of the experiment.

1.3 RJMSs Evaluation: Workloads and Metrics 7

When all the jobs are submitted to the RJMS and have been completed (or evicted),
the experiment ends. Finally, depending on the RJMS (or the simulator), the data
can be analyzed offline after the end of the experiment.

1.4 Contributions
In a first contribution, chapter 3, we proposes a new scheduling policy to schedule
parallel jobs with redirection. The objective of the study is to propose an efficient
scheduling algorithm for HPC jobs. Redirecting a job consists of stopping the
execution of a running job to execute it into another cluster, or a dedicated part of it.
The evaluation of the scheduling policy is conducted with an extensive simulation
campaign to assess the performances of the new scheduling policy.

In the second contribution of this work, we are interested to extend scheduling
simulations with models for the jobs. As explained in section 1.3.1, a standard
methodology is to use a workload composed of jobs that have been submitted
to a real platform. However, the workloads are often composed of high-level
information about the jobs, such as the submission date, their processing time,
and the walltime. More detailed information, such as the executed program or the
amount of bandwidth used, is difficult to obtain and is not available in the workloads.
This level of information available to experimenters has largely impacted the way we
simulate scheduling. During the simulation, the job as simulated as a fixed amount
of time that the scheduler has to wait before their completion [KSS19; Gal+20]. In
production clusters, various effects happen on the computing platform that is not
taking into account with this job model. The effects can be performance issues due
to bad resource allocation for a job, or performance issues due to different jobs using
the network and generating network interferences [Bha+13; Smi+18]. In chapter 4,
we propose to extend scheduling simulations with models for the job executions. We
present three different models and discuss their trade-offs in terms of performances
and simulated effects.

One of the evaluated models is called the ptask model, this model has a reasonable
trade-off in terms of precision of the simulation and execution time. In chapter 5
we evaluate the interference model of the ptask model against an HPC application.
The evaluation compares the simulation of the ptask with the execution of an HPC
application, in both simulation and reality we create synthetic network interferences
to evaluate different scenarios.

In chapters 4 and 5 we aims to extend scheduling simulation with job models,
however in some scenarios this approach is not always feasible. The major issue
with simulation is that by using a model of the RJMS, one loses the details of the
implementation of the software, which can lead to unadapted simulations. This is
the case for instance, when one need to find the best configuration parameters for a

8 Chapter 1 Introduction

specific cluster. The third contribution, presented in chapter 6, tackles the problem
of experimenting directly with real RJMSs. We propose two new approaches to study
distributed systems in controlled environments without requiring a model. Chapter 7
details the technical tools supporting the two aforementioned approaches.

The reproducibility of science is a crucial factor to build reliable knowledge. One
factor playing against the reproducibility of computer science work is the software
collapse[Hin19]. Software collapse refers to software that stops working if it is
not actively maintained or developed, scientific software is also subject to this
phenomenon. In chapter 8, we show that Functional Package Managers can be
leveraged to achieve the reproducibility of the software stack (not the hardware) on
which a program depends. With this methodology we ensure the reproducibility of
the execution and build an environment of our scientific software can be preserved.
Reproducing the production environment allows us to share and execute scientific
programs, and with the build-environment to modify a scientific program (to fix bugs
or add new features). This is what we called the variation. The scientific experiments
and programs created for this dissertation follow the principle of variation.

1.4 Contributions 9

2Experimental Study of RJMS:
Methods and State of the Art

2.1 Introduction
HPC platforms are subject to numerous evolutions from diverse sources, the plat-
forms become heterogeneous in resources, but also in the diversity of scientific
applications1 using it. Hence, RJMSs need to evolve to integrate this heterogeneity
to efficiently manage the next generations of computing platforms.

The Resource and Job Management and Scheduling Systems (RJMS) are complex
software designed to manage HPC platforms where the main objective is to achieve
great performance and scalability. This particular context has two implications. First,
the RJMS of the platform must provide fast and adapted decisions to match the
user’s demand in computing resources. Second, it is not possible to modify the RJMS
on a production platform without risking to hinder the system’s performance or
worst generating downtimes of the entire system.

Therefore, it is necessary to have tools and methodologies to support the development
of RJMS through experiments and to provide efficient RJMSs matching the evolution
of HPC systems.

Application
Real Model

Platform
Real

in-vivo
(Testbeds or real platform)

benchmark

Model
in-vitro

Emulation
in-silico

Simulation

Table 2.1. Experiment classes depending on the application and the platform (real or
model) [GJQ09].

Traditionally, the study of computer science applications falls into three classes of
experiments (the terms are derived from biology): In-vivo is the study of a real
application into its targeted final environment. In-vitro (or emulation) is the study
of a real applications into a simulated environment. In-silico (or simulation) consists

1This section focuses on computer science applications in the broad sens — An RJMS is an application.
To remove confusion, the scientific applications used by the end-users of an HPC center are referred
to as jobs or job’s execution.

11

to use a model of the targeted application in a simulated environment. In our specific
context, the studied applications are RJMSs.

Table 2.1 illustrates these methodologies adapted to computer science systems [GUSTEDT_2009].
The benchmarking category is added to the experiment classes and corresponds to
using a model of an application on a real platform, in order to evaluate hardware’s
performances or detect performance issues. However, to the best of our knowledge
benchmarking is not used in our context due to the complexity of the RJMSs.

The RJMS occupies a central place in the HPC system and has interdependencies
between the users, the platform, and the jobs. For instance, the user’s behavior
is directly impacted by the system’s reactivity [ZF14]. In the context of RJMS,
experimenters have to compose with all the complexity of the system and need to take
into account the users, the physical infrastructure, the jobs and their executions, and
the RJMS. Properly assemble all these elements to create, trustworthy, reproducible,
controllable, and scalable experiments is challenging.

Experimenters have found diverse ways to conduct experiments with RJMS, from
taking advantage of technical tools such as virtual machine to leveraging models
from the grid and HPC community. All methodologies broaden the landscape of
possible experimental setups to study RJMS. In this work, we propose the notion of
hybridization lying between real and model, for the platform and the RJMS. This
notion comes from the observation that with the methodologies used to study RJMS
in the state of the art, the separation between reality and model isn’t well defined.

• In [Dut+16], the authors propose a new RJMS simulator: Batsim. Batsim
provides an RJMS model, but the scheduling is made by an external program
using a generic API. With this design, the authors were able to isolate the
scheduler of a real-world RJMS (OAR) and to create an interface between
Batsim and the OAR’s scheduler. This methodology mixes part of a real RJMS
(OAR) with an RJMS model (Batsim), therefore it is nor completely simulation,
nor completely emulation.

• In the Slurm simulator [JDC18] the authors altered the Slurm RJMS to remove
limiting or irrelevant parts of the RJMS in order to extend its simulation
capabilities. More specifically, the modifications enable to accelerate the
simulation and increase the reproducibility of the results. In this case, the
authors modified a real word RJMS, hence the RJMS is not totally emulated.
Even if a large part of the RJMS’s source code is used, the modifications made
imply that the removed or modified parts are modeled.

This chapter presents the different methodologies from the state of the art to support
the idea of hybridization. Figure 2.1 illustrates the hybridization and places the
different approaches detailed in this chapter.

12 Chapter 2 Experimental Study of RJMS: Methods and State of the Art

Re
al

H
yb

ri
di

za
ti

on
M

od
el

Pl
at

fo
rm

ModelHybridizationReal

RJMS

Infrastructure
Testbed

Altered
Platform

Virtualized
Platform

Batsky

RSG

Internal Simulation
Capabilies

Batsim with
OAR’s scheduler

Altered RJMS

Simulator with
Platform Model

Discrete Event
Simulator

Figure 2.1.: Hybridization mixes approaches based on reality and model. The blue clouds
locate the contributions of this work according to the hybridization. The
approaches using a model of RJMS are detailed in section 2.2. The approaches
based on real or hybridized (left column) RJMS are detailed in section 2.3.
Simulators with platform model is the focus of chapters 4 and 5, RSG and
Batsky approaches are detailed in 6. Chapter 3 evaluates a new scheduling
policy with a Discrete Event Simulator.

The remaining of the chapter is organized into two parts corresponding to two main
approaches that have been used to conduct RJMS experiments.

• The first approach focuses on testing new ideas with an RJMS model, via
simulation.

• The second approach focuses on using a real-world RJMS, either to evaluate
its performances or as a starting point to evaluate new ideas. This approach is
related to emulation and in-vivo.

2.1 Introduction 13

2.2 Using RJMS Models

The first approach to study RJMS is to create a model of an RJMS and to run
simulations. This approach enables experimenters to run experiment campaigns
without requiring a real RJMS or a platform.

Creating an efficient scheduling algorithm for HPC clusters is an active field of
research. Evaluating new scheduling policies is a real challenge, and as stated
in 2.3.1 using a production cluster is not recommended.

The methodology presented in this section is to develop a simulator for RJMS
simulations. Simulation is a way to quickly design, prototype, and evaluate new
ideas for HPC clusters, such as new scheduling algorithms. A simulator has good
properties, it is fast, reproducible, and increases the number of available scenarios.

One common technique is to use Discrete Event Simulation, which models the
workload and the job’s execution as a sequence of discrete events. This technique
has been used for the last decade to evaluate scheduling algorithm for HPC. However,
a new simulator was developed almost at each new idea, and the adoption of tools
from one experimenter to another was pretty low. As a consequence, many simulators
were not openly released or left unmaintained once the paper has been published,
or the original programmer stopped working on it. The author of [Poq17] describes
this phenomenon as Publish and Perish.

Finally, more stable simulators have started to emerge to propose a common
model and methodology for HPC RJMS simulation. The most notable projects
are Alea [KSS19], AccaSim [Gal+20], Batsim [Dut+16], and ScSF described in the
(more details about ScSF in the next section 2.3.2). Table 2.2 shows the differences
between the different simulators, according to four different properties.

From the presented simulator, has the particularity to ScSF rely on a real RJMS. Its
design and implementation have been already covered in section 2.3.2. Evaluating
new scheduling policies with ScSF is tedious as one needs to integrate it into the
Slurm code. The execution of the framework is complicated, as it involved several
technical aspects such as creating different virtual machines, with remote access
(ssh). Therefore, ScSF is not suitable for large experiment campaigns and requires
good technical knowledge hindering the ease to use and to reproduce. However, it
is an interesting tool for system administrators that wish to find suitable a Slurm
configuration for their computing infrastructures.

More recently, the RJMS Flux provides a simulator to test the scheduler without
a particular setup. However, currently no documentation is available to run the

14 Chapter 2 Experimental Study of RJMS: Methods and State of the Art

Scheduling Workload Platform Model Job Model

Alea
Internal

(Customizable)

• SWF format

• Adaptive submissions

GridSim:

• Failures model

• Platform description

Static time period

AccaSim
Internal

(Customizable)

• SWF format

• Adaptive submissions

Ad hoc :

• Extendable

with external data

Static time period

Batsim Generic API

• Custom format

• Conversion scripts

from and to SWF

• Dynamic submission

SimGrid:

• Platform description

• Network model

• Host speed model

• Inter/Intra job interference

• Or, Static time period

Flux

Simulator
Flux scheduler • Custom format Ad hoc Static time period

ScSF Slurm • SWF Ad hoc Syscall sleep

Table 2.2. Comparison of five open source simulators for the simulation of RJMS.

scheduler or to change the scheduling policy. The current state of the simulator is
awaiting a merge request on a collaborative version control website 2.

The three last simulators (Alea, AccaSim, and Batsim) share the idea to build an
efficient, reliable, and easy to use, scheduling simulator for HPC platforms. Using
such simulation tools is efficient to quickly prototype and evaluate scheduling policies.
Simulators have common properties:

• Scheduler (or scheduling algorithms): Determines how the scheduling al-
gorithm is simulated. Most simulators embed the scheduling process in the
simulation core, this is the case for AccaSim, Alea, and ScSF. Implementing
a new algorithm requires to develop inside the simulator, by extending pre-
defined scheduler classes. Batsim’s authors made the choice to completely
separate the scheduling from the core of the simulator, and instead expose a
generic API to separately create new scheduling algorithms. The Flux simu-
lator uses a scheduler compatible with the Flux RJMS. Despite its early stage
of development Flux is a complex software, the lack of documentation and
tutorials about the simulator lower its usability. Creating a new scheduler in
Flux is a complex task.

• Workload: As explained in section 1.3.1, the workload is a crucial input for
every RJMS experiments. Thus, each simulator has its way to inject a workload
during the simulation, one common way is to describe the workload into a static
file and provide it as an input of the simulation. The most used file format to
describe HPC workloads is Standard Workload Format (SWF) [Cha+99]. Both

2https://github.com/flux-framework/flux-core/pull/2561

2.2 Using RJMS Models 15

https://github.com/flux-framework/flux-core/pull/2561

AccaSim and Alea feature a way to directly read SWF formatted workloads.
Furthermore, AccaSim and Alea feature dynamic workloads [ZF14]. Dynamic
workloads are based on the observation that static workloads, composed with
fixed job arrival dates, do not adapt their behavior depending on the scheduler
performances which is the case in production. Dynamic workload adapts the
arrival dates of the jobs depending on the scheduler performances. Batsim has
its workload model and features different scripts to convert to and from SWF
format. Besides, during a Batsim’s simulation, the scheduler can submit new
jobs not initially present in the input workload. On its side, the Flux simulator
has its dedicated workload format, close to SWF, but with information relative
to the Flux RJMS.

• Platform model is the modelization of the platform for the simulation. Two
different categories exist: Simulators with an integrated platform model, this
is the case for Accasim and the Flux simulator; and the simulators based on
a simulation toolkit, this is the case for Batsim and Alea. Alea is based on
GridSim [Sul+08], and Batsim is based on SimGrid [Cas+14]. The description
of the simulated computing platform is made using the simulation toolkit
(either SimGrid or GridSim). Alea leverages GridSim to simulate failures
during the experiment. Although the Accasim’s platform model is not based
on a simulation toolkit, its platform model is extendable to simulate different
scenarios, such as nodes failures or energy consumption.

• Job model defines how the jobs are simulated. Flux Simulator, Alea, and
AccaSim consider jobs as discrete events, once a job starts its execution the sim-
ulator knows the job’s ending time — the simulator may hide this information
to scheduler because HPC schedulers are online (1.2.1). Once the simulation
time has reached the job’s completion time, the job naturally ends. This model
does not simulate the variability of the job’s performances depending on its
execution context (the platform capacity and the other jobs running at the
same time). Batsim, on the other hand, provides different models for the
execution of the jobs. The models are based on SimGrid simulation toolkit.
These models enable the jobs to use the computing resources of the simulated
platform (such as the CPUs and the network). The execution time of the jobs
does not depend on a static time statically provided, but instead is computed
during the simulation, and depends on the platform’s capacity (node speed,
network latency, network bandwidth) and the other jobs executing at the same
time.

This thesis focuses on the simulator Batsim, more specifically chapters 4 and 5 target
the validation of the aforementioned job model featured with Batsim.

16 Chapter 2 Experimental Study of RJMS: Methods and State of the Art

2.3 Experiment with Real RJMSs
The second approach to study RJMS is to directly use real-world RJMS, either to
evaluate it or to add new ideas. This approach enables experimenters to be close to
a real system and to increase the confidence we have in experiments. Additionally,
in some cases, it is necessary to directly use real RJMS. For scalability evaluation or
to test new features during development for instance.

In-vivo and emulation are good candidates to deal with real RJMSs. Two approaches
exist to conduct experiments with a real RJMS. The first possibility is to have a
distributed platform to execute the RJMS code (section 2.3.1). One difficulty is
to embrace the fact that RJMSs are distributed software and that to execute an
RJMS, one needs to have a platform with at least a few functional nodes. A node
is functional if it features all the prerequisites to execute the source code of the
RJMS, such as an operating system with network access. The second possibility is
to work directly with the code of the RJMS to extends its simulation capabilities
(section 2.3.2).

The first possibility enables to use a real RJMS without modification at the cost of
increasing the experiment complexity because a functional platform is required. The
second possibility enables to reduce the complexity of the experiment but at the cost
of altering the RJMS to the point that it is not representative of the reality.

2.3.1 Real RJMS with a Functional Platform

Real Platform

Using a production platform is challenging because it is often not possible to modify
the RJMS of a production platform. Even in the case of a platform would be available
for experimenters the reproducibility of such an experiment is close to zero due to
the user submissions.

An alternative is to use a dedicated testbed such as Grid’5000 [Bal+13]. Grid’5000
has several clusters with different configurations. Grid’5000 enables experimenters
to access to a computing platform with root access on the nodes. It is therefore
possible to install a different RJMS on a platform, or a subset of nodes of the platform
to conduct experiments. Additionally, one can install a custom system’s image on
the nodes, increasing the tuning capabilities and the reproducibility.

Platform testbeds are direct candidates to experiment with RJMS as it is possible
to completely customize the software on the platform. This is the approach used
in [Mer+17], Mercier et al.deployed on a Grid’5000’s cluster two different real-
world RJMSs on the same platform to measure the feasibility of their approach. One

2.3 Experiment with Real RJMSs 17

RJMS comes from the HPC community (OAR), while the second RJMS comes from
the big data community (YARN).

Grid’5000 is also used in [GUSTEDT_2009] to compare their RJMS simulator with
reality. In both aforementioned cases, the authors use a workload composed of
application benchmarks ([Bai+91]). The benchmarks are executed on the ex-
periment platform. In the case of [Mer+17] also used benchmarks for big data
applications [Wan+14].

In [Ahn+20], they compare the throughput of their RJMS, Flux, to the throughput
of the Slurm RJMS. They use a cluster composed of 32 nodes and were able to install
both RJMSs to do a performance evaluation. This work focuses on RJMS throughput,
therefore each job immediately exists directly after it starts executing.

Using a real platform has good properties because it increases the practical feasibility
of new ideas and gives results close to a production system. However, the scope of
available studies is limited to platforms at hand. Any study involving an unavailable
platform is not directly feasible.

The high variability of real systems and the complexity of the installation hinders
the reproducibility of the experiments. Indeed it requires both the platform used to
support the experiment and knowledge in system administration and infrastructure
management.

Finally, experiments using a real platform are time-consuming because it is in real-
time. It is problematic to study RJMS behavior for long periods. To give an example,
with the usage policy of Grid’5000 the longest possible jobs are during the weekend
(from Friday 5 pm to Monday 9 am).

Hybridization: Mixing Reality and Model

Virtualization and containers enable to execute an operating system on virtual
hardware isolated from the actual computer’s operating system, they enable to
execute several operating systems on top of single computer hardware. These
techniques fall into the hybridization category as they mix reality — the operating
system — and model — the virtualized hardware.

Virtualization or Containers. One solution is to leverage virtualization to create a
virtual platform on top of a physical platform. With this technique, one can simulate
a different platform than the physical platform used.

Despite the fact that the virtual nodes are less performant due to resource sharing,
an operating system can be installed on the virtual nodes. A virtual node shares all
the functionalities of a normal one, and are able to act as the computing nodes of a

18 Chapter 2 Experimental Study of RJMS: Methods and State of the Art

computing cluster. However, the virtual nodes are necessarily less performant are
they share the same hardware. One can install a real-world RJMS on the virtual
platform.

Virtualization is useful to increase the number of available nodes and to create
a larger platform with few physical resources. However, the virtual nodes are
significantly slower than the original nodes, and it is often not possible to execute
the real jobs during the experiment.

This methodology has good control over the environment and increases the re-
producibility of the experiment; nevertheless reproducing experiments involving
thousands of virtual machines requires a setup that can be tedious to reproduce.
Using these techniques is also useful for developers because it enables to create
a (very) small platform on a single laptop for testing purpose. However, increas-
ing the number of virtual nodes per physical node decreases the performances of
each virtual node, and therefore the jobs of the simulation are slow and become
unrepresentative of a job’s executions. A common technique is to use, instead of
a real job, a system-call sleep causing the virtual node to be idle, during the job’s
execution. In [Geo+15] they developed their scheduling policy directly in Slurm.
For the evaluation, they managed to instantiate a platform with 5040 virtual nodes
and install Slurm with only 20 physical nodes. They replace all jobs with a sleep
command.

Altered Platforms. Virtualization (or containerization) is useful to test system scala-
bility and instantiates larger platforms that the available platform. Another approach
is platform alteration, it aims to model a different platform on top of a real platform,
and increase the number of available scenarios.

In [Sar+13], they propose Distem, a tool for experimenters to model a platform
from a set real platform (using Grid’5000 for instance). Leveraging virtualization
and containerization they create a modeled platform with reduced capacity. The
main difference, with the previous approach (containers and virtualization), is that
Distem aims at proposing a realistic platform, but with modified characteristics.
Instead of creating a full-scale platform, Distem provides a way to explore different
controlled scenarios during experiments, such as changing the network topology of
the original platform or injecting nodes failures.

Platform Simulator

The last possibility is to use a platform simulator or a platform simulation toolkit.
Several platform simulator have been proposed, and feature platform models that can
run on a single node, or a personal laptop, GridSim [Sul+08], SimGrid [Cas+14].

2.3 Experiment with Real RJMSs 19

One difficulty is to accurately simulate the network of the computing platform.
In [Leg15], the author describes three different approaches to simulate the network
at scale. Packet-level simulators, delay-based network model, and flow-level of
TCP. While the packet-level simulators are the more realistic, as they simulate each
network packet navigating through the network layer, they fail to scale to a large
number of nodes because the quantity of packet to simulate drastically increases with
huge HPC cluster. The alternative, cost-efficient delay-based network model has good
scalability properties, but the proposed models do not include network contention.
Finally, the flow-level network simulation proposes good simulation capabilities to
simulate network at scale, as it is both scalable and feature a contention model.

Although, even if several platform simulators have been proposed, such as SimGrid
or GridSim, using a real RJMS with this kind of simulator is challenging. This kind of
simulator is not directly usable with RJMS as it is not possible to install an operating
system capable to execute real code on the simulated nodes.

Chapters 6 and 7 of this dissertation focuses on extending the emulation capabilities
of the SimGrid simulation framework, in order to use an RJMS on the simulated
platform.

2.3.2 RJMS Hybridization
Another possibility to work with a real RJMS is to modify its source code to the
advantage of the experimenter. For instance, one can remove unnecessary (for the
experiment) synchronization threads to increase the execution speed.

The first way is to use the integrated simulation capabilities when they exist, Flux
RJMS for instance directly embeds a simulation mode. The second way is to make
modifications to the RJMS code to extend its simulation capabilities. Finally, the last
solution is to isolate a part of the RJMS to study it in simulation.

Integrated Simulation Capabilities

Slurm and Flux both offer simulation capabilities.

In [Pol+18], they use the flux simulator embedded into the flux source code to eval-
uate their scheduling policy. However, to the best of our knowledge, the simulation
models have not been published yet, so it is difficult to have a precise idea of its
simulation models.

In [GH12], Georgiou et al.use the Slurm’s feature multiple SlurmD to evaluate the
scalability of the Slurm RJMS by simulating a cluster up to 16, 384 computing nodes
on few hundreds of real computing nodes. Slurm architecture is based on a single
controller (SlurmCtld) and several Slurm daemons (SlurmD). A Slurm installation

20 Chapter 2 Experimental Study of RJMS: Methods and State of the Art

has one controller for the entire cluster, and one SlurmD running on each node.
All the computing-intensive operations, such as the scheduling, are executed on
the controller. SlurmD daemons are used to control job execution and monitor the
computing nodes.

Multiple SlurmD is a Slurm’s feature that enables to install multiple SlurmDs on a
single computing node. The different nodes are virtualized using processes, from
the SlrmCtld point of view one SlurmD equals one virtualized computing node. It
is worth mentioning that similarly than from using virtualization, the computing
nodes are not able to execute HPC jobs, and thus the jobs are reduced to a call to the
system call sleep. Additionally, the execution speed of the experiment is based on the
real-time, leading to long experiment time. In their publication, the authors measure
Slurm’s efficiency to deal with both a large number of resources and large numbers
of jobs. Therefore, one instance of their experiment lasts around ten minutes, as the
workload is representative of jobs burst.

Altered RJMS

The Slurm Simulator. The Slurm simulator has been originally proposed in [Luc11].
The principal idea has been used in [Rod+17] from BSC lab, which has benefited
from an upgrade in [JDC18]. The simulator features a modified Slurm’s version
(17.11 in the latest upgrade), the changes that were made to the Slurm’s source code
are:

• Original implementation [Luc11].

– They get rid of all unnecessary threads during the simulation to increase
the simulator scalability.

– They replace SlurmCtld main loop for a simulation loop, and to simulate
the SlurmD daemons, which is are no longer needed. Only the SlurmCtld
and the database daemon remain active during the simulation, no need
to use SlurmD daemons.

– The simulation is managed by a new component: sim_mng. Using
LD_PRELOAD (detailed in chapter 7), they managed to inject the simula-
tion time to increase the simulation speed.

• In [Rod+17], the authors modified the SlurmD daemon to incorporate it into
the simulation. One SlurmD daemon is sufficient for the whole simulation.
Additionally, they increase the simulation speed and fix various bugs. The
authors also integrate the simulator with various tools to help the workload
input generations and the analysis of the results.

2.3 Experiment with Real RJMSs 21

• Finally, in [JDC18], they managed to upgrade the Slurm version of the simula-
tor, they also made the simulator deterministic improving at the same time the
reproducibility of the results. Additionally, they propose the first comparison
to the Slurm Simulator compared to a real-life experiment.

The Slurm simulator is a good example of altered RJMS, as the authors of the
simulator managed to increase the simulation capabilities of the Slurm RJMS with
few modifications. They remove the unnecessary parts of the RJMS, either to increase
the scalability of the simulator or to speed up the simulation. The approach is
interesting as it enables to use a functional (yet modified Slurm) for the experiments.
In [Álv+17], they implement a workflow aware scheduling policy into Slurm and
they use the Slurm simulator to evaluate it.

This approach is useful to experiment with the Slurm RJMS, however, it is limited
to a unique Slurm’s version. The simulator needs to be adapted and re-evaluated
for each new Slurm’s release. Thus, this approach is not well suited to support
experiments for the evolutions of new Slurm features.

Additionally, the platform of the experiment has very low simulation capabilities.
The simulated jobs are reduced to a call to the system function sleep. Therefore,
it is difficult to use this approach to experiment on a heterogeneous platform,
or to evaluate topology-aware job placement algorithms [Geo+17; Cru+19] for
instance.

Taking Advantage of Modularity

In [Dut+16], the authors managed to isolate the job scheduling part of the production-
ready scheduler OAR [Cap+05]. They plugged the scheduler on a simulator: Batsim.
Hence, all the scheduling decisions are left to the OAR scheduler, and Batsim man-
ages the simulated computing platform and the simulation of the workload and the
jobs.

This approach is convenient to evaluate the scheduling policies implemented in OAR,
and in the case of the original work to validate the simulator Batsim. However,
extending this methodology to other RJMS is not directly extendable to other RJMSs,
because it is not always possible to isolate the job scheduler of an RJMS.

2.4 Choosing the Adapted Methodology
All presented methodologies aim to experiment with RJMS and are separated into
two main approaches. One can either use and experiment with a real-world RJMS
or to build a model of the RJMS. This section aims to clarify the conditions that lead
experimenters to use one approach over another.

22 Chapter 2 Experimental Study of RJMS: Methods and State of the Art

One thing to consider is the difficulty to implement a new idea or to test and validate
new hypothesizes. Using real RJMS is tedious because it requires having a good
understanding of every aspect of the RJMS to be able to add new features or new
algorithms. Whereas, the simulators presented in section 2.2 aims at reducing the
cost to prototype and evaluate new ideas. For example, with Batsim’s generic API to
create schedulers, a scientist developing a new algorithm doesn’t need to understand
Batsim’s internal functioning but only the exposed API.

From a general perspective, using an RJMS model offers more stability in the results,
and are more reproducible. Furthermore, simulations are fast and can simulate
months of HPC activity in less than one hour, increasing the number of parameters
that can be explored during a single experiment campaign. The experimental setup
needed to use real RJMS is often more complex and requires technical manipulations.
Furthermore, the experiments are costly in time and one experiment campaign can
last several days, experimenters have to drastically limit the number of explored
parameters.

Finally, and most importantly, every presented methodology has a different way to
control reality, and thus the events that should be happening during an experiment.
The experiment class in-vivo, for instance, has the advantage to incorporate all the
complexity of the platform, from predictable behaviors such as network contention
to unpredictable events such as unwanted node failures. This complexity needs to
be carefully taken into account by the experimenters, at the risk to miss the target of
the study. On the opposite side, simulation heavily relies on models. Models are by
essence an abstraction of reality. Using too simple models may lead to simulations
that are too far from reality, and therefore are not suitable to construct reliable
knowledge. When using a model, one needs to consider two points. First, what part
of the reality is captured, and if it does apply to the experiment objectives. Secondly,
the accuracy and applicability of the model must be cautiously validated to increase
the confidence in the results. In case these two points are not carefully verified or
are not possible, using an approach based on reality can be a good alternative.

2.5 Conclusion

This chapter depicts the methodologies used for experimenting with RJMS. The
original statement based on table 2.1 present four experiment classes, in-vivo, in-
vitro, benchmark and simulation. This statement assumes that experimenters have
the possibility to use either a model of the studied application (in our case the
studied application is RJMS) or to use a real application. And, that the studied
application needs an environment to carry the experiment that is also either a model
or real.

2.5 Conclusion 23

Based on the observations of the methodologies used in the literature we introduced
the hybridization that mixes real components and modeled ones. Additionally,
the axis between reality and model is not discrete, instead, it gradually goes from
one reality to model. Figure 2.1 illustrates this idea and places the methodologies
described in this section in the two axes. This figure enables to locate the different
works done in this thesis.

Next, chapter 3 presents the evaluation of a new scheduling policy for parallel
jobs. The scheduling policy has been evaluated using the Discrete Event Simulator
approach, with the Batsim simulator.

In chapters 4 and 5, we focus on extending current simulation capabilities, to be
able to simulate the jobs, and their induced resources activities, to increase the
confidence we have in our simulations and broaden the scope of different scenarios
one can experiment with. This is the cloud located on the bottom-left side of the
figure, entitled Simulator with platform model.

In chapter 6, we present a new approach to experiment with real RJMS on a platform
simulator, without prior modification on the RJMS’s source code or extensive use of
virtual machines.

24 Chapter 2 Experimental Study of RJMS: Methods and State of the Art

3On-line Scheduling with
Redirection for Independent Jobs

3.1 Introduction
The need for efficient automatic tools for managing the resources in large scale
modern parallel and distributed platforms become more important as their com-
plexity increases [Don+11; Ahn+20]. On the first hand, we need simple enough
mechanisms able to deliver an allocation of jobs to the processors at scale, but on
the other hand, such mechanisms should include all features needed to deal with
specific situations (like delay in delivering data associated with a job, big differences
in job size or the consequences of disturbances). The situation of actual resource
management systems is paradoxical in the sense that the processor allocation policies
remain very simple with a lot of additional specialized or generalized plugins which
make the whole system considerably hard to maintain [Gle16; Geo10].

The problem considered in this chapter is to determine an allocation of the jobs
submitted to the platform to the available distributed resources (1.2.1). This prob-
lem has been considered from two different perspectives. First, from the viewpoint
of the middleware community, many solutions have been provided which consist
of rather simple heuristics developed in simulations or actual systems. There is
not always an explicit objective to optimize and the main challenge is to design
robust strategies that are implemented in existing management systems like SLURM
or Torque. Second, from the viewpoint of combinatorial optimization, many ide-
alized problems have been solved for adequate and simplified cases. Most of the
existing studies in this context consider restricted hypotheses (like sequential jobs,
precisely known processing times, no congestion in the interconnection network,
etc.). The challenge is to reconciliate both viewpoints and design algorithms with
good performances on realistic models of the platforms. This can be achieved by
theoretical analysis involving approximation or competitive algorithms and to assess
the proposed methods on well-targeted experiments.

We consider the problem of scheduling parallel jobs without preemption in multi-
processor clusters. More specifically, we consider the concept of job redirection,
where a job can be killed and restarted into another cluster — or another dedicated
set of processors. The idea of redirection comes from resource augmentation [KP00],
a technique for analyzing the competitivity ratio of on-line algorithms under the
assumption that we compare the on-line algorithm to a weaker version of the

25

corresponding off-line optimal. Scheduling with redirection has been previously
studied [LMT17] for sequential independent jobs where promising results have
been presented. As far as we know, this idea has never been presented in HPC.

However, actual management systems are built mainly to cope with parallel jobs,
which differs from existing redirection algorithms that consider sequential jobs. In
this work, we introduce a new algorithm to schedule parallel and independent jobs
with redirection. It is a step further to integrate the redirection into production man-
agement systems. The redirection operates by detecting heavy jobs and redirecting
them into a dedicated pool of processors, where no redirection is further possible.
Detecting such heavy jobs is done by keeping track of the set of jobs submitted
during the execution of a job. When a fixed threshold of arrivals is reached for a
particular running job, the job is characterized as heavy and it is redirected, leaving
room for queued jobs.

In this work we propose an algorithm to schedule parallel independent jobs with
redirection. We validate our approach through an extensive simulation campaign
based on the analysis of logs extracted from three production management system.
We compare this algorithm to a well-known and widely used scheduling policy, FCFS
with EASY backfilling, and we show that scheduling parallel jobs with redirection
improves the average bounded slowdown objective. The slowdown is a popular
metric that targets the time a job stays in the system from its release time to its
completion (normalized by its size). It reflects the user satisfaction [Fei01b].

The work of this chapter has led to one publication [Fau+20]. It has been made in
collaboration with Geogio LUCARELLI, Olivier RICHARD and Denis TRYSTRAM.

3.2 Definition and Notation

As defined in in 1.2.1, we consider in this work the problem of scheduling a set of
jobs into an HPC platform. That is to say, finding an allocation of each job to a set
of free — or available — resources as well as assigning it a starting time. Note that
preempting the execution of a job is not allowed. Moreover, the parallel execution
of two or more jobs on the same resource is not permitted, and hence the assigned
resources to a job should be available during the whole interval of its execution.

To evaluate our scheduling algorithm, we use the bounded stretch also known as
the bounded slowdown (BSLD) metric [Fei01a], which is defined for a job j as
follows:

BSLDj = max
(

Fj

max (pj , τ) , 1
)

(3.1)

26 Chapter 3 On-line Scheduling with Redirection for Independent Jobs

where τ is a constant that prevents small jobs to have a high impact on the overall
performances. In this work, we set τ to 60 seconds. Accordingly, we define the
average and max slowdown as follows:

BSLDavg = 1
n

∑
j∈[n]

BSLDj ,

BSLDmax = max
j∈[n]

(BSLDj) .
(3.2)

3.3 Related Work

There exists a huge literature dealing with job scheduling and resource allocation.
We present below the most relevant studies related to this problem. Resource
allocation and job scheduling is a basic problem, which was studied at several levels.
In this work, we are mainly interested in the problem of scheduling at a wide level
such as HPC computing and cloud computing where the scheduler has to handle
a set of resources and responds to many requests submitted by the users of the
system. This problem is well known to be NP-complete for decades, even in several
restricted cases [Ull75]. The underlying complexity of the scheduling problem makes
it well studied and often simple solutions are in use in practical environments. Most
existing production schedulers use the FCFS policy in conjunction with a technique
called back-filling to increase the utilization of the cluster [MF01]. In the past years,
the scheduling problem has become even more complicated with the increasing
complexity of the computation platforms. Job scheduling for this kind of platform
remains challenging. Scheduling with preemption has been shown useful, especially
in environments such as big data and cloud where jobs can be more flexible. In cloud
system, jobs can be migrated to another place thanks to machine virtualization. In
big data frameworks, the jobs are fault-tolerant and the scheduler can dynamically
adapt their number of resources[Mer19].

In this work, we are interested in scheduling parallel jobs, with the ability to redirect a
running job, but without allowing the preemption of its execution. That is to say, a job
can be killed and restarted (from the beginning) later. Scheduling with redirection
with preemption has been studied, to increase the resource usage[Ana+12], in the
cloud and big data environments where the jobs are more flexible. Studies show
that preemption can be leveraged to optimize the waiting time[BSS13], or to free
resources needed for a high priority job[Cho+13].

Our contribution differs in the way that we propose redirection for HPC jobs, where
the constraints imposed on the system do not allow preemption. However, we allow
the system to kill jobs to redirect them, thus approaching the idea of preemption.

3.3 Related Work 27

3.4 Scheduling Parallel Jobs in HPC
Environments

Given a set of jobs, a scheduling algorithm defines for every jobs a starting date, and
an allocation. In HPC environments, each job is known by the scheduler only at its
arrival time, and hence the scheduler has to take on-line decisions. At its arrival time,
a job may have to wait in the queue if there are not enough available resources on
the system. Depending on a priority function, the scheduling algorithm determines
the order to run the jobs in the waiting queue; this order defines the primary queue
policy. In this work we focus on the First Come First Served policy (FCFS) according
to which the jobs are sorted in non-decreasing order of their release time: a job j
precedes a job j′ if rj < rj′ . In case of a tie (rj = rj′), an arbitrary order is chosen.

When the first job in the queue is delayed due to the unavailability of a sufficient
number of resources, processors can remain idle while some jobs are waiting to
be executed. To increase resource utilization of the platform, the actual job and
resource management systems use the mechanism of back-filling in conjunction with
the primary queue policy. Back-filling takes benefit from the idle waiting resources
and the walltime, by allowing the execution of one or several smaller jobs during the
period when bigger jobs are waiting for a sufficient number of resources. Several
back-filling mechanisms have been proposed, such as conservative back-filling and
EASY back-filling [FW98]. In this work, we consider the EASY back-filling mechanism
introduced by Feitelson et al. [MF01], which is one of the most widely used among
HPC resources managers, such as SLURM [Gau+18]. It owes its popularity to its
ability to achieve high resource allocation thanks to a simple and scalable scheduling
policy.

Back-filling a job means that a job with a lower priority is allowed to overtake a job
with a higher priority. The condition under which a job can be back-filled is that it
should not delay the provisional execution of its preceding jobs that are not started
yet. Several variants of back-filling exist, like conservative back-filling and EASY
back-filling. The conservative back-filling mechanism satisfies this condition for all
jobs in the primary queue. EASY back-filling satisfies this condition only for the first
job in the primary queue. In practice, EASY back-filling is categorized as aggressive
because it causes most of the small jobs to be executed before the big jobs.

In this work, we focus on the EASY back-filling mechanism, because of its small
complexity which makes it suitable for HPC clusters that have a high constraint on
response times.

28 Chapter 3 On-line Scheduling with Redirection for Independent Jobs

3.5 Scheduling Parallel Jobs with Redirection

3.5.1 General Description of the Redirection

The redirection is a generic mechanism, it can be used in conjunction with any other
HPC scheduling algorithm. This is mainly because the redirection does not directly
impact the scheduling decisions, instead it can independently choose to redirect
a job to improve later scheduling decisions. The redirection mechanism identifies
jobs that are worth to be redirected and move them into a dedicated part of the
cluster — or another independent cluster. To set up the redirection, we propose
to split the resources of the platform into two independent groups as depicted in
Fig. 3.1: the principal group and the redirection group. The size of the redirection
group is determined by a parameter α, the percentage of allocation. Depending on the
total number of available resources and on the properties of the jobs targeting the
HPC platform, the size of the two groups needs to be adapted. The principal group
contains (1 − α)m processors while the redirection group contains the remaining
αm processors of the platform, where m is the total number of processors. Both
groups can be scheduled independently without interfering.

Identifying jobs that harm the overall cluster’s performance is difficult, as it is not
easy to evaluate. The redirection mechanism identifies such jobs by counting the
number of submitted jobs during the execution of another job. This method enables
the estimation of the induced pressure by a job. If a job has a counter higher than a
fixed threshold θ, the system can choose to trigger a redirection. That is to say, each
job running into the principal group holds the number of jobs submitted during its
execution. When a job has been chosen to be redirected, it is killed by the system
and moved to the redirection group which is exclusively dedicated to these jobs
in order to not further delay the execution of redirected jobs. A job cannot be
redirected multiple times. Besides, as stated before, we focus on the case where no
preemption is allowed, as a result, a redirected job is terminated and restarted from
the beginning into the redirection group.

3.5.2 Dealing with Parallel Jobs

The idea of redirection comes from [LST16], where the authors introduced the
rejection as a resource augmentation technique: the scheduler is allowed to reject a
fraction of the jobs submitted to the system. Redirection is a practical adaptation
of the redirection where the system is not allowed to reject jobs. The idea of the
redirection has been studied for sequential and independent jobs in [LMT17]. It
also introduces the resource partitioning which is discussed in 3.8. However, recent
management systems are built to cope with parallel jobs, which is not possible with

3.5 Scheduling Parallel Jobs with Redirection 29

m

Redirection

No redirectionRedirection Group: size = αm

Principal Group:

size = (1− α)m

Figure 3.1.: Division of the nodes of a cluster of m processors in respect of the input
parameter α, with 0 6 α 6 1. Both group are managed by an independent
scheduler.

the existing redirection algorithms. Extending the redirection to parallel jobs is
necessary to use it in a production management systems, but it is not an easy task.

The idea of counting jobs has been introduced by Lucarelli et al.[Luc+16]. One
challenge induced by extending the redirection to parallel jobs comes from the
resource allocation. The sequential algorithm allocates a processor to a job j at the
time rj . Reproducing this allocation is not feasible for the parallel algorithm — or
too complicated. The direct cause of this difference is that the early allocation gives
an estimation on a load for each processor. More specifically it is possible to estimate
the impact of the execution of a specific job onto another set of jobs, i.e. the jobs
waiting for the same processor. In the case of parallel jobs, estimating the impact of
a specific job execution is harder since allocating a job to a set of processors is often
done at the last time.

This cannot be applied in the case of parallel jobs in HPC systems using FCFS with
back-filling since the assignment of a job to a set of processors is in general decided
at the beginning of the execution of the job, while this assignment may implicate
several processors and hence several running jobs. For this reason, the counters of
all jobs running in the principal group are increased at the arrival of a new job.

The second challenge of extending the redirection to parallel jobs is the fact that the
redirection relies on a static separation of the resources of the cluster into two static
groups. The size of the redirection partition limits the size of the jobs that can be
redirected, and thus limits the capacity for the redirection to take the best decisions.
Parallel redirection needs to cope with this issue and determine the best partition
sizes that will enable to redirect heavy jobs, without allocating an unreasonable
number of resources for the redirection group.

3.5.3 Execution

At the initialization, the redirection needs to define the scheduling policy for both
principal and redirection groups. We set FCFS with EASY back-filling for both
principal and redirection groups, and we activate the redirection only for the principal
group.

30 Chapter 3 On-line Scheduling with Redirection for Independent Jobs

Algorithm 1 Scheduler using the redirection.
The scheduler manages two distinct groups of processors, with their corresponding
job queue.

1: procedure SCHEDULER(SP1,SP2, j) . SP1 and SP2 two scheduling policies and
j a newly submitted job

2: if NbAvail(Resources) ≤ qj and j 1st in queue then
3: Start j
4: else
5: T ← Redirection(j, θ) . c.f. in Algorithm 2
6: if T is not None then
7: Kill T
8: add T to the queue of the redirection group
9: end if

10: end if
11: Schedule principal group with SP .
12: Schedule redirection group with SP .
13: end procedure

Algorithm 2 Algorithm for the redirection mechanism.

1: procedure REDIRECTION(j, θ, m′ = αm) . j is a newly submitted job, θ is the
threshold value, and m′ the size of the redirection group.

2: for k ∈ Runningjobs do
3: if wj >= wk then . restricts impact of huge jobs
4: Counterk ← Counterk + 1
5: end if
6: end for
7: T ← {l ∈ Runningjobs, Counterl > θ, rj ≤ m′} . Create the set of jobs

exceeding θ and fitting in the redirection group size
8: if T 6= ∅ then
9: r ← conflictRedirectionPolicy(T) . conflictRedirectionPolicy tunes

the selection of jobs in case of conflict.
10: Reset every Counter
11: return job r
12: end if
13: return None
14: end procedure

3.5 Scheduling Parallel Jobs with Redirection 31

The algorithm 1 describes how the redirection is integrated into a scheduling al-
gorithm, while the redirection mechanism itself is detailed in Algorithm 2. The
parameters of the latter one are the set of m processors, the percentage of allocation
α, and the threshold θ used for tuning the redirection.

When a job j enters the system for the first time (rj), it is assigned to the queue of
the principal group. If the queue is empty and there are enough available resources,
the job is directly started on the principal group. However, if the queue is not empty
or there are not enough resource available to start the job immediately, the job will
wait and will be assigned to the scheduling queue of the principal group. In addition,
the redirection increment the counters of the jobs running onto the platform. Once
all submitted jobs have proceeded, the redirection mechanism can decide to redirect
a job (Algorithm 2). The decision to redirected is taken when one of the job’s
counter exceeds the input parameter θ — the redirection threshold. Whenever a
job is redirected it is killed and submitted from the beginning to the scheduler of
the redirected group — in which no further redirection is possible. One important
restriction induced by parallel jobs is that a job can be redirected only if its number
of requested resources (qj) is less or equal to the size of the redirected group. That is
to say, for a job j to be illegible for redirection, it needs to satisfy qj ≤ αm. After one
redirection occurred, the counters of each running job are reinitialized to zero.

In some cases, several jobs can exceed the threshold at the same time, the redirection
mechanism determines which job will be redirected according to a conflict resolution
policy (e.g., select the job with the greatest walltime, or the max qj).

Another effect that should be controlled is the impact of huge jobs on small jobs.
Our algorithm focuses on identifying big jobs hurting the cluster performance, if job
triggers the redirection of a small job then the redirection can negatively impact
smaller jobs. To avoid this issue, we set a filter preventing jobs to trigger redirection
of smaller jobs. The filter is configured such that if a job j is submitted, only the
counter of each job k satisfying wk ≥ wj is increased.

3.6 Experimental Settings

3.6.1 Simulation and Inputs

The redirection algorithm has been integrated into the Batsim simulator [Poq17]
which is available as an open-source software. Section 4.2 provides a more detailed
description of Batsim. In our case, the scheduler is an external program implementing
the EASY-Backfilling policy with the redirection mechanisms. The model of job used
during the simulation is the delay profile (section 4.3), therefore the job’s executions
are not impacted by their placement on the cluster.

32 Chapter 3 On-line Scheduling with Redirection for Independent Jobs

The performance of our algorithm depends on a set of input parameters, namely,
the size of the platform, the workload and the inputs related to the redirection
mechanism itself. The latter is the threshold of redirection (θ), the parameter α
specifying the proportion of processors used for redirected jobs. To understand the
behavior of the redirection, we ran thousands of simulations with several sets of
inputs for the redirection in order to determine the best possible combination of
parameters. The following of this section explains how each parameter impacts
the scheduling performance and presents the parameters used in the simulation
campaign.

3.6.2 The Workloads

The workload is a static set of jobs that need to be scheduled during a simulation,
and it is given as a simulation input. Batsim uses a JSON definition of the workload,
where each job is defined by a json object containing all the parameters introduced
in Section 3.2. As in a production cluster, the scheduler only knows the walltime of
the jobs. During the simulation, at the release time of a job, Batsim sends to the
scheduler the given walltime of the job and the number of requested resources. The
actual processing time remains known only by Batsim, allowing Batsim to kill the
jobs exceeding their walltime (wj). Since the users overestimate the execution times
of their jobs, we choose to give to the scheduler the exact job processing time. This
can be justified by considering better estimations for the exact processing times of
jobs obtained for example by a learning algorithm [Gau+15] (this study is out of
the scope of this work).

The workload is a sensitive input of the simulation, as its impact on the schedul-
ing policy is unpredictable[LTZ19]. Choosing a workload for the simulations is
complicated. One common practice is to directly use logs from production clusters,
where we can get information about jobs — like processing time, time of arrival, etc.
The web site parallel workload archive (PWA) [Fei19] hosts a consequent number
of workloads dedicated to this purpose. To evaluate our algorithm, we run an
extensive campaign of simulation on workloads extracted from logs of production
clusters — namely, Curie, Intrepid [Tan+11] and Ricc, all provided by PWA. For
each of the production cluster logs, we extract 20 weeks of jobs. The extraction
routine extract weeks (168 hours) with a mean utilization of at least 70%, ensur-
ing that the traces are loaded enough to benefits from the redirection — indeed
under-loaded traces do not represent any challenge and can be handled by any other
traditional schedulers. TABLE 3.1 summarizes the characteristics of the original
traces used for the extraction. Inquisitive readers are invited to read the section
dedicated to each log provided by PWA for an extensive description of the log used.

One limitation induced by the replay of static workloads is that the number of
processors of the cluster needs to be the same as for the original platform. If the

3.6 Experimental Settings 33

Cluster Total processors Total jobs
Intrepid 163,840 68,936

Curie 93,312 773,138
RICC 8,192 47,794

Table 3.1. List of the clusters used for replay and their important characteristics.

simulation is configured to use fewer processors in the principal group than the
number of processors of the cluster the workload stem from, some jobs may be
unable to execute during the simulation. Enforcing the scheduler to forget such jobs
is not something that is allowed. In the case of the redirection, we split the cluster
resources into two independent groups — the greater the parameter α, the more
resources we need to reserve for the redirection. To cope with the above problem,
and still execute every job of the original trace, we instead increase the number
of resources based on the parameter α. Once the resource groups are created the
principal group holds the number of resources of the original cluster. Note that to
ensure the fairness of our study, we also give the extra resources to the algorithms
without redirection. One aspect of this choice is that a too large value of α decreases
the load of the schedule, as there is room for more jobs. To limit this effect, we
are interested in determine small α values for which the redirection improves the
performances.

3.6.3 Redirection Parameters: α and θ

As stated before, θ is the value of the redirection threshold and α determines the
size of the redirection group. Both parameters need to be wisely tuned to find the
best possible redirection performance. The threshold of redirection will impact the
sensitivity of the redirection. A high value will rarely be reached leading to idle time
for the redirection group, while setting θ to a low value will trigger a large number of
redirections, leading to a redirection group overloaded. A large value of α allocates a
lot of processors for the redirected jobs, leaving room for a lot of redirected jobs at
the cost of reducing the size of the principal group. On the other hand, reducing the
α value increases the number of jobs that are not eligible for the redirection.

Both parameters need to be carefully configured, in order to obtain the best perfor-
mance for the redirection mechanism. To determine the best configuration, we ran
simulations using all the combinations for θ ∈ {1, 2, 5, 10, 15, 25, 50, 100, 125} and
α ∈ {0.1, 0.15, 0.20, 0.25}, for each of the 20 extracted weeks. The result and the
selection for the best parameters are described in the following section.

It is worth mentioning that the best parameter configuration also depends on other
factors, such as the distribution of the size of the jobs of a particular workload. For
Instance, the minimum job size allowed for the Intrepid cluster is 256, meaning that

34 Chapter 3 On-line Scheduling with Redirection for Independent Jobs

a redirection group of size smaller than 256 leads to a loss of resources without any
positive affect on the performance.

3.6.4 Reproducibility
The redirection mechanism implementation is available on-line and open-source
project, along with the data, the analysis source code and the visualisation tools1.

3.7 Experimental Results
In this section, we first present the impact of the parameters in the performance of
the proposed mechanism. Then, we compare the results of our algorithm to FCFS
with Back-filling. In the following figures, as we extracted a set of workloads from
the original logs, the results are presented as box plots.

3.7.1 Parameters Tuning
In Fig. 3.2 the y-axis corresponds to the considered objective. More specifically, we
study (a) BSLDavg, (b) BSLDmax and (c) the average waiting time. For figures at
the left, each column grid represents a different value of parameter α, the x-axis
represents the different threshold values θ we used. Respectively, in the right figures
each column grid represents a different value for the threshold θ, so the x-axis
represents the different values for parameter α.

For θ (looking at the right figures), note first that small threshold values redirect a
lot of jobs, and as a result, increases the load of the set of processors allocated for
the redirected jobs. On the opposite side, high threshold values will never trigger
any redirection, letting the processors in the redirection group idle. Based on these
observations, we deduce that the average waiting time decreases as the threshold
is increasing, for all workloads (Curie, Ricc and Intrepid). However for Ricc and
Intrepid, we see that the average waiting time increases if the redirection threshold
is too high (θ => 26). This effect does not happens for Curie. On another hand,
redirection leads to an important improvement for BSLDavg when using small and
moderate values of θ, which leads to a larger number of redirected jobs. Specifically,
we observe that there is an optimal threshold value for BSLDavg which is between
10 and 75 for the Curie instances, between 5 and 15 for Intrepid and between 5 and
25 for RICC.

For the percentage of allocation α (looking at the right sided figures), we first note
that a small value may cause congestion in the redirection group, especially if there
are a lot of redirected jobs. On the second hand, a very big value would improve
the performance in the redirection group, but it is not realistic as we want to keep a

1https://gitlab.inria.fr/adfaure/evipar

3.7 Experimental Results 35

θ=5 θ=10 θ=15 θ=25 θ=50 θ=100

C
urie

Intrepid
R

icc

10 15 20 25 10 15 20 25 10 15 20 25 10 15 20 25 10 15 20 25 10 15 20 25

1

2

3

4

5

5

10

15

20

0

10

20

30

40

Redirection Threshold (θ)

A
ve

ra
ge

 B
S

LD

θ=5 θ=10 θ=15 θ=25 θ=50 θ=100
C

urie
Intrepid

R
icc

10 15 20 25 10 15 20 25 10 15 20 25 10 15 20 25 10 15 20 25 10 15 20 25

1

2

3

4

5

5

10

15

20

0

10

20

30

40

Allocation Percentage(α)

A
ve

ra
ge

 B
S

LD

α=0.1 α=0.15 α=0.2 α=0.25

C
urie

Intrepid
R

icc

5 10 15 25 50
100 5 10 15 25 50
100 5 10 15 25 50
100 5 10 15 25 50
100

0

2000

4000

6000

8000

0

500

1000

1500

2000

0

10000

20000

30000

Redirection Threshold (θ)

M
ax

 B
S

LD

α=0.1 α=0.15 α=0.2 α=0.25

C
urie

Intrepid
R

icc

5 10 15 25 50
100 5 10 15 25 50
100 5 10 15 25 50
100 5 10 15 25 50
100

0

2000

4000

6000

8000

0

500

1000

1500

2000

0

10000

20000

30000

Allocation Percentage(α)

M
ax

 B
S

LD

α=0.1 α=0.15 α=0.2 α=0.25

C
urie

Intrepid
R

icc

5 10 15 25 50 5 10 15 25 50 5 10 15 25 50 5 10 15 25 50

0
5000

10000
15000
20000

0

20000

40000

60000

0

50000

100000

150000

200000

Redirection Threshold (θ)

A
ve

ra
ge

 W
ai

tin
g

T
im

e

θ=5 θ=10 θ=15 θ=25 θ=50 θ=100

C
urie

Intrepid
R

icc

10 15 20 25 10 15 20 25 10 15 20 25 10 15 20 25 10 15 20 25 10 15 20 25

0
5000

10000
15000
20000

0

20000

40000

60000

0

50000

100000

150000

200000

Allocation Percentage(α)

A
ve

ra
ge

 W
ai

tin
g

T
im

e

Figure 3.2.: Lower is better — For each of the 20 workloads extracted from Curie, we
computed BSLDavg on the upper side and BSLDmax on the midel line, the
average waiting time (WAITavg) on the lower line. Each violin is created by
20 such workloads under a certain set of parameters. Each plot under the same
line shows the same objectives, with different perspectives. On the left plots,
the redirection threshold is in the x-axis and the y-axis represents the observed
metric. Each column of the grid represents a different allocation percentage α.
While on the right plots, the allocation percentage is in the x-axis, each column
grid represents a different threshold.

36 Chapter 3 On-line Scheduling with Redirection for Independent Jobs

reasonable total number of processors. We observe that the impact of the parameter
α to the average waiting time objective is very important due to the increased number
of processors used in the redirection group as we increase α. However, this effect
stops for large values of θ (>= 100) where the α parameter does not impact the
performances anymore.

We can retain two messages from the results of Fig. 3.2. First, the choice of the
parameters is very important for the performance of our mechanism while the two
parameters are strongly related: in case of a small redirection threshold which
implies a lot of redirected jobs, the size of the redirection group should be larger in
order to execute them without important delays. Second, the different parameters
work well for different objectives. Thus, it is up to the system administrator to
choose how to configure the system with respect to the type of quality of service that
she/he wants to provide to the users.

3.7.2 Comparison to EASY Back-filling

In this section, we perform a comparison of the performance of FCFS/EASY back-
filling when using or not the proposed redirection mechanism. We focus only on
BSLDavg and BSLDmax objectives as well as on the values of the parameters θ and
α which show good performances for these objectives. The y-axis of Fig. 3.3 shows
the ratio of the corresponding objective function of FCFS with EASY back-filling
policy (without redirection) over FCFS/EASY back-filling and redirection. If this
ratio is smaller than 1, the redirection improves the performance.

Recall that the redirected jobs are restarted from the beginning to satisfy the non-
preemptive constraint, and hence the workload executed in the presence of the
redirection mechanism is larger. However, we observe in Fig. 3.3 that by appropri-
ately choosing the parameters θ and α, the performance of FCFS/EASY back-filling
can be improved by a factor of 10% for Curie, 20% for Intrepid and 40% for Ricc
when considering the BSLDavg objective. On another hand, the impact of redirec-
tion is not so beneficial for BSLDmax since the redirected jobs are restarted and
since the job with the maximum BSLD value tends to appear in the redirection
group. However, there is always a couple of parameters for which both objectives
are improved, e.g., α = 0.15 and θ = 10 for the Curie trace where the average
improvement for both BSLDavg and BSLDmax is around 10%.

The last figures 3.4 show the impact of the performances of the redirections in
respect of the average waiting time objective. The figure shows both the previously
studied objective BSLDavg along with the average waiting time. We observe that
the redirection can improve the average waiting objectives for two of the three
used workloads. For the Curie, cluster the redirection has a negative impact of the
average waiting time, while still improving the BSLD objective. Intrepid on the

3.7 Experimental Results 37

Comparison of EASY back-filling with redirection and without redirection for
the Average and Max BSLD objectives for

Curie, Intrepid and Ricc.

α=0.1 α=0.15

2 5 10 15 25 50
100

125 2 5 10 15 25 50
100

125

0.3

1.0

3.0

Redirection Threshold(θ)

R
at

io
 o

f a
ve

ra
ge

 B
S

LD

(a) Curie — BSLDavg

α=0.1 α=0.15

2 5 10 15 25 50
100

125 2 5 10 15 25 50
100

125

1

10

100

Redirection Threshold(θ)

R
at

io
 o

f m
ax

 B
S

LD

(b) Curie — BSLDmax

α=0.2 α=0.25

2 5 10 15 25 50
100 2 5 10 15 25 50

100

0.5

1.0

3.0

Redirection Threshold(θ)

R
at

io
 o

f a
ve

ra
ge

 B
S

LD

(c) Intrepid — Ratio of BSLDavg

α=0.2 α=0.25

2 5 10 15 25 50
100 2 5 10 15 25 50

100

0.1

1.0

10.0

Redirection Threshold(θ)

R
at

io
 o

f a
ve

ra
ge

 m
ax

 B
S

LD

(d) Intrepid — Ratio of BSLDmax

α=0.1 α=0.15

2 5 10 15 25 50
100

125 2 5 10 15 25 50
100

125

0.1

1.0

10.0

Redirection Threshold(θ)

R
at

io
 o

f a
ve

ra
ge

 B
S

LD

(e) Ricc — Ratio of BSLDavg

α=0.1 α=0.15

2 5 10 15 25 50
100

125 2 5 10 15 25 50
100

125

0.1

1.0

10.0

Redirection Threshold(θ)

R
at

io
 o

f m
ax

 B
S

LD

(f) Ricc — Ratio of BSLDavg

Figure 3.3.: Lower is better, under horizontal line means that the redirection is more
effective — For each of the 20 workloads extracted from a cluster, we computed
the ratio of BSLDavg without redirection over BSLDavg with redirection, and
we did the same for the BSLDmax. Each box is induced by 20 such ratios.
The black line is the median ratio and the red square the average ratio. The
horizontal lines represent the quartiles. The figure presents the results for each
cluster, the two upper figures deal with Curie, the middle one corresponds to
Intrepid while the bottom one concerns Ricc.

38 Chapter 3 On-line Scheduling with Redirection for Independent Jobs

Comparison of EASY back-filling with redirection and without redirection for
the waiting time objective
Curie, Intrepid and Ricc.

α=0.1 α=0.15

5 10 15 25 5 10 15 25

0.3

1.0

3.0

10.0

30.0

Redirection Threshold (θ)

M
et

ric

metric Average BDSLD Average Waiting Time

(a) Curie

α=0.2 α=0.25

5 10 15 25 5 10 15 25
0.3

1.0

3.0

Redirection Threshold (θ)
M

et
ric

metric Average BDSLD Average Waiting Time

(b) Intrepid

α=0.1 α=0.15

5 10 15 25 5 10 15 25

0.1

1.0

10.0

Redirection Threshold (θ)

M
et

ric

metric Average BDSLD Average Waiting Time

(c) Ricc

Figure 3.4.: Lower is better, under horizontal line means that the redirection is more
effective — For each of the 20 workloads extracted from a cluster, we computed
the ratio of BSLDavg and we did the same for the average waiting time. Each
violin is induced by 20 such ratios. These plots have the same structure than
Figure 3.3, but focus on the waiting time objective. Ratio of the average waiting
time in blue (dark gray) BSLDavg in green (light gray)

3.7 Experimental Results 39

other hand, has the same behavior as for Curie, but the redirection does not arm the
average waiting time as much, and some workloads can benefit from the redirection
in respect of the average waiting time. Interestingly, for the Ricc cluster we show
that certain set of parameters can improve both the average waiting time and the
BSLDavg, especially for the parameters α = 15 and θ = 25.

3.8 Conclusion
We proposed a mechanism based on redirection of parallel jobs that can be used on
the top of other queuing scheduling and allocation policies. The selection of the jobs
that should be redirected is done with respect to their impact on the performance
of the other jobs in the queue. Although the redirection mechanism causes an
additional load due to the kill-restart policy applied to the redirected jobs, it can
improve the performance of the system especially for average objectives as shown
in the extensive simulation campaign. Interestingly, the experimental results show
that the redirection can exploit the benefits of preemption, even in cases where
this is not explicitly allowed. Redirection presents interesting results, especially
for BSLDavg, which is a metric based on the satisfaction of the user. We showed
that some workloads are more responsive than other to the redirection; further
investigations are needed to understand these variations.

A direct limitation of the redirection is the creation of two distinct groups of proces-
sors. Splitting the resources can have a strong impact on the utilization. In case of a
cluster filled with jobs that cannot be redirected (because of a too small partition size
for instance), the resources of the redirection group are lost. Moreover, new requests
need to constantly arrive into the cluster to trigger redirections. If no redirection
is triggered, the resource of the redirection group are also lost. As a future work,
we will consider using a dynamic partitioning of the resources, or no partitioning
at all. The second issue is that one job cannot benefit from the whole cluster at the
time, leading to a loss in computing capacity. This can be solved buy adapting the
algorithm to allow huge jobs to use resources from both groups.

Tuning the parameters α and θ is an important step to setup the redirection. It
challenges the ease to use the redirection in a production center without prior
configuration. Simulating the redirection with past logs of the system can be used.
Another solution is to use online-learning, such as multi armed bandit, to find the
best parameters during production.

One important metric for system administrators is the resource utilization of the
cluster. Considering the principal group, the redirection can use any scheduling
algorithm. For instance, in our experiment we use FCFS-Easy backfilling, which is
known to generate high cluster utilization. The redirection group also uses a basic
scheduling algorithm (FCFS-easy in our case); the same reasoning can be applied.

40 Chapter 3 On-line Scheduling with Redirection for Independent Jobs

Another impact of the redirection on the utilization is the lost computations induced
by killing jobs. This lost computation aims at improving the user satisfaction as the
cluster will use the extra place for more user jobs. As explained in the following
paragraph, mechanism such as checkpoint restart could be leverage to lower lost
computations.

Another future work is to evaluate how the redirection can settle into a more realistic
environment. Redirecting a job brings new challenges to the job and resource
management system. Some jobs can have side effects such as appending data to
a dataset or holding active connections. Killing and restarting a job might require
extra work from the users to be effective. In addition, the link with mechanisms
such as checkpoint restart (C/R) should be studied, as it enables partial preemption
of a job.

This work shows that it is possible to adapt scheduling policies from theoretical work
to a more practical use case using simulation. However, the current simulations are
not fully representative of a real use case, as many effects happening on the platform
are not taken into account during the simulation. The following of this dissertation
proposes to extend the simulation capabilities of Batsim by incorporating models for
the job executions.

3.8 Conclusion 41

4Scheduling Simulation with Job’s
Models

4.1 Introduction
From the RJMS perspective the jobs are black boxes because the RJMS has only a
partial view of what is happening on the platform. For a job submission, the user
must provide the number of resources required (in recent system one may also need
to specify the kind of resources), a walltime (detailed in section 1.2.1), and a script
to start the job. The RJMS does no (or few) monitoring on the computing platform
during the execution of the jobs. Alone, these information lead to a partial view of
the computing cluster. However, to build a more accurate vision of the computing
platform it is necessary to obtain more information from the jobs, such as how they
use the resources of the computing platform. In [Eme13], the author shows that by
using more information about the computing platform, one can detect bottlenecks
and therefore improves the overall system performance.

In a production system the job executions are affected by various factors:

• Physical capacity of the computing platform, the speed of the nodes, the
interconnect capacity and the storage performance.

• The placement of the applications on the computing platform.

• The application itself, how it uses its allocated resources (network, IO and
CPU).

In this environment, the scheduling and placement decisions impact the perfor-
mances of the applications, and therefore impact the performance of the whole clus-
ter. For instance, the locality of MPI applications has an impact on their performances
and its optimization has received attention in the literature, as TreeMatch[JMT14]
or EagerMap[Cru+19] aim at improving locality of MPI application to reduce their
inter node communications.

Traditionally, HPC applications are parallel applications performing homogeneous
phases of communications and computations on an homogeneous computing plat-
form. However, recent platforms have become more and more heterogeneous, and
the applications evolved in such a way that the RJMS has to handle more complex
user demands — such as allocating diverse accelerators, BurstBuffers or General
Purpose Graphical Processing Units (GPGPU). To handle these requests, the RJMS

43

has to increase its resource description definition to correctly manage the comput-
ing platform and answers the user demand. On the other hands, from the RJMS
perspective the jobs are black boxes that need to be executed onto the computing
platform. The lack of information about the applications and their usage of the
computing platforms can lead the RJMS to take decisions with undesirable side
effects. Indeed, the scheduler can make harmful decisions such as launching two
applications that will intensively use the network or the file system leading to per-
formance reduction [Bha+13; Bro+18], or reach a power state too high for the
cluster.

In this context, evaluating the scheduler performance is a real challenge. It becomes
crucial to integrate into the experiments the behavior of the jobs concerning their
usage of the computing resources.

One approach is to use simulation to study new scheduling algorithms. The simula-
tion instantiates a model of a computing platform managed by the studied scheduling
algorithm. A technique of workload replay can be used to evaluate the performance
of the algorithm (see section 1.3.1). However, these simulations often use simple
models for the jobs and the platform. The jobs can be modeled as fixed amount
of time to spend on a platform, while the platform itself is modeled as an array of
heterogeneous computing nodes, this is the approach made by the simulator Ac-
casim [Gal+20]. This model of simulations is used for its simplicity and its scalability.
One can simulate months of a computing platform in a few hours. Nevertheless, this
model fails to capture many effects occurring when a job is executed in a production
environment. For instance, jobs are not impacted by their placements on the platform
or by the other jobs running at the same time. These limitations limit the scope
of the feasible studies. For instance, evaluating the impact of different allocation
policies on heterogeneous cluster is not easily feasible.

To cope with these limitations, we need a job model that is able to capture the behav-
ior of real HPC jobs. In particular, we want to integrate the resources consumption
behavior of the applications in simulations, such as network usage or computation.
Moreover, looking at resources consumption enables to model applications inde-
pendently of their underlying technologies as we can focus on their activity on the
computing platform, and not their implementation.

One requirement is that simulations need to be scalable in time, as we want to
simulate different scheduling policies or platform configurations to compare them.
The simulation time of a single job should not drastically increase as one simulation
could embed thousand of different jobs representing days, months of a computing
platform usage. However, increasing the complexity of a simulation model necessar-
ily increases the computing time of the simulation. Depending on the requirement
of the simulation, one can trade performance for precision.

44 Chapter 4 Scheduling Simulation with Job’s Models

In this chapter, we present how we leverage the Batsim [Poq17] simulator to create a
first step towards scheduling simulations with job models. The job models enable to
simulate slowdown effects based on the platform capacity and inter-job interferences.
Batsim is a batch scheduler simulator which internally uses SimGrid [Cas+14], a
generic distributed platform simulator, to simulate the applications running on a
computing platform (including network interference, and platform topology).

In section 4.2, we present Batsim and detail how it works, we then discuss why
it is a good candidate to support our work — in this first part we also presents
SimGrid (4.2.1) and its simulation models. In section 4.3, we present the different
job models available with Batsim (some are provided by SimGrid), and we compare
their overheads and the different phenomena that they are able to simulate.

The work presented in this chapter has been done in collaboration with Millian PO-
QUET and Olivier RICHARD, and has led to one publication [FPR18] (in french).

4.2 The Batsim Approach
Batsim [Poq17] is a scientific simulator to analyze batch schedulers and scheduling
policies. It leverages the simulator SimGrid and uses its simulation models. The
section first introduces SimGrid, and the remaining of the section presents Batsim
and its architecture.

4.2.1 SimGrid

Why SimGrid?

Three main classes of simulator exist for the simulation of large scale distributed
infrastructures. The classes are based on how the network is simulated: The packet-
level simulators, the delay simulators and the flow level simulators [Leg15].

• Packet-level simulators are discrete event simulators where the events are
all the network packet needed for the communications. This approach has a
high level of realism, as every byte that is transiting through the network is
simulated. However, in the case of large scale computing systems, simulating
every packets is resources demanding and significantly increases the time
of the simulations. The simulators NS2 [IH09] and CODES [Mub+17], for
instance, use this model. CODES accelerates the simulation using parallel
branching predictions, which is resources demanding.

• Delay-based simulators simulate the network traffic as fixed amount of time
between the communications. This model is very effective and scalable as
no extra computation is required. However, it fails at simulating potential
network contentions.

4.2 The Batsim Approach 45

• Flow-level network model is a more scalable alternative of the packet-level
network model enabling to study network contentions. Instead of simulating all
the network packets, the communications are modelled as unique entity: flows.
This level of abstraction enables to increase the scalability of the model, while
being able simulate network contentions for large scale systems. The simulators
SimGrid [Cam11] and GridSim [Sul+08] are such of these simulators.

SimGrid is a framework to design simulators of distributed applications [Cas+14].
It is a versatile simulator created not to be specific to one computing domain.
Instead, SimGrid provides network and computation models to be used across
different distributed computing domains, such as HPC, Grid, peer computing, cloud
computing and volunteer computing.

The SimGrid’s network model is based on the flow model, instead of simulating
all the packets of the network traffic (packet-level simulator), it relies on a purely
analytical model [Cam11]. This level of abstraction on the network model makes
it possible for Batsim to simulate large scale platform along with the execution of
the applications. The soundness and the validity of the SimGrid’s network model
has already been evaluated [FC07; VL09]. Besides the network model, the SimGrid
project actively developed, and the community is active and has been very helpful
regarding their users.

How does it works?

SimGrid provides models to simulate a distributed computing platform, and provide
ways to model the applications using it. The platform is defined by hosts, each
having a computing speed, and links connecting the hosts. Each link is associated
with a transfer speed, and a latency.

To model an application, one creates activities on the platform, each activity induces
an amount of work to the simulated platform. One activity can be an amount of
computations, or an amount of data to transfer between hosts, the activity is finished
when this amount of work reaches zero. SimGrid transforms the different activities in
a set of linear constraints, in which each activity is represented by as many variables
as the number of resources it uses. Each used resources is represented by a constraint
in the system, and the capacity of the resource bounds the constraint.

Solving an optimization problem associated to the linear model enables to create
a resources attributions for each activities of the simulation. A more detailed and
precise version of the core of the simulation is described in [Leg15].

46 Chapter 4 Scheduling Simulation with Job’s Models

4.2.2 SimGrid Provided Models
Additionally, SimGrid features different platform models to tune how SimGrid solves
the activities. The different models are described in the following subsections.

SimGrid MPI (SMPI), Online and Offline

SMPI is a SimGrid implementation of MPI enabling to emulate an MPI application
directly with SimGrid, on a single computer [Deg+17]. Interestingly, SimGrid
leverages its MPI implementation by integrating trace replay mechanism. The trace
replay enables to simulate an MPI application execution using a trace of a previous
execution [Des+11]. Instead of executing the real application’s code, the trace replay
executes the actions contained by the trace. The traces are called Time-Independent
Traces(TiT) because it contains only the action performed by the traced application
without the time at which the action occurred. More specifically, the TiT trace
contains the actions done by each process of the application during its execution
sorted par order at which they occurred. Relevant information are logged, if the
action is a communication the amount of data is logged as well as the processes
involved. SimGrid simulates the trace by unfolding the actions done by the processes
of the application.

Parallel Task (ptask) Model

5e6

5e6

5e6

5e6

5e6

5e6

 0

5e6

 0

 0

 0

5e6

 0

 0

 0

 0

Host1

Host2

Host3

Host4

Host2 Host3 Host4Host1

Figure 4.1.: Ptask communication matrix. The arrows show the direction of the communi-
cations.

The parallel task(Ptask) model defines a way to describe a parallel application by
specifying two information concerning its usage of the computing platform. The
objective of a Ptask is to simulate a parallel application running on a platform
without simulating its detailed behavior, it aims at simulating a parallel task that will
be executed on several hosts (or cores) of the computing platform. Ptask features a
way to bundle the usage of an application on a platform to create an homogeneous

4.2 The Batsim Approach 47

progress for the whole application. The model’s running time — the time predicted
by SimGrid— depends both on the platform (its performance and topology) and on
the other activities that execute concurrently on the platform.

To compute this model SimGrid requires two information. The first information is an
amount of computation to perform on each host allocated fort the model. The second
information is the amount of communication from and to each host, it is represented
as a matrix. Figure 4.1 illustrates how the communications are represented.

SimGrid computes the ptask progress by first finding the bottleneck of the task, this
is the limiting factor of the ptask. From this limiting factor, the completion time
of the ptask (in the current state) can be computed. As the ptask (may) bundles
different activities on other resources and homogenizes the progress, SimGrid adapts
the load on the other resources to reduce the speed of the ptask’s activities.

Figure 4.2 unfolds an example with three ptasks on a platform with two hosts (node-
1 and node-2) connected by one link. The speed of the hosts, is 100 flops/sec, and
the link capacity is set to 100 b/s — the values are simple to facilitate the example:

1. First, at t = 0 the platform has only one ptask, the purple present(plain
borders), using all the resources. This ptask is configured to perform 1000 flops
on each hosts, and a data transfer of 600 b between node-1 to node-2 . The
bottlenecks are the CPUs, which are 100 % loaded (using the 100 flops/sec),
and therefore the link is only loaded at 60 % (using 60 b/s) to finish at the
same time.

2. The blue ptask (dashed borders) arrives on second late, at t = 1, and only
uses the link, for a total amount of 1000 b/s to perform. After one second, the
purple ptask still has 900 flops on each hosts to compute, and 540 b to transfer.
SimGrid shares the link to both tasks to use 50% of the link’s capacity each,
therefore the pink task has to decrease its load (to 83.3 %) on the two hosts to
adapt the pace as the Link becomes the bottleneck.

3. Finally, 5 seconds later at t = 6, the yellow task (dotted borders) arrives and
has to perform 300 flops on node-1 and 1000 flops on node-2. Node-2 is the
bottleneck of the yellow task, and uses half of its total capacity, the second
half being allocated to the purple task. Then purple task adapts its load. Node-
2 becomes the new bottleneck and it uses 50 % of its total capacity, the load of
the purple task on node-1 is also adapted to 50 %.

48 Chapter 4 Scheduling Simulation with Job’s Models

Node-1
Link

Node-2
100 flops/second 100 flops/second

100 bits/second

100% 100%
60%

Node-1 Node-2Linkwork
ptask

1000 flops 1000 flops600 bits

Details of remaining work (t = 0s)

50%

50%

83.3% 83.3%

Node-1 Node-2Linkwork
ptask

900 flops 900 flops540 bits

0 flops 0 flops1000 bits

Details of remaining work (t = 1s)

Node-1 Node-2Linkwork
ptask

483 flops 483 flops290 bits

0 flops 0 flops750 bits

300 flops 1000 flops0 bits

Details of remaining work (t = 6s)

30%
50%

50%30%
70%

50%

t = 1s

t = 0s

t = 6s

Figure 4.2.: Example of how the application progress is computed using the ptask model. At
t = 0, the purple task (plain borders) uses the two nodes at their full capacity,
while the link is used at 60 %. Then, at t = 1, a new task arrives (dashed
borders) performing a data transfer on the link, taking half the of the link’s
bandwidth. Hence, the link becomes the bottleneck of the purple task which
has to adapt its load on the two hosts. Finally, at t = 6, the green task (dotted
borders) arrives with some work on the two nodes, taking 50 % of the host’s
speed.

4.2 The Batsim Approach 49

4.2.3 Batsim: Infrastructure Simulator for Resource
Management

What is Batsim?

Batsim [Poq17] is a simulator to analyze batch schedulers, its is an open source
software and is actively developed. Batsim uses SimGrid to simulate the computing
platform and the jobs running on it, while the scheduling decision are left to an
external program called the scheduler.

Figure 4.3 depicts the architecture of Batsim. The scheduler communicates with
Batsim through the Batsim protocol, which is a network text-based protocol. All
the scheduling decisions, such as allocating a set of resources and deciding when
a job starts are left to the external scheduler. The jobs are known by Batsim and
are submitted to the scheduler using the protocol. This architecture following the
separation of concerns enables scientists or system administrators to focus on their
scheduling algorithm and their evaluations, while the simulation capabilities are
provided by Batsim. Figure 4.4 depicts a simplified exchange between Batsim and the
scheduler. Batsim submits events to the scheduler, and waits for its response before
continuing the simulation. The basic events are the job submissions and job ending.
The scheduler controls the jobs of the simulation, it asks for their execution.

Batsim is built upon SimGrid: It enables to use the SimGrid simulation models,
such as the platform models and description to simulate the execution of the jobs
(described in chapter 4). Each input job of the simulation has an execution profile
attached to it, describing how the job should be simulated.

The separation of concerns between the scheduler and the simulation brings great
potential to quickly prototype and evaluate new scheduling algorithms. The internal
usage of SimGrid enables to benefit from the SimGrid models for HPC applications
and infrastructures.

50 Chapter 4 Scheduling Simulation with Job’s Models

Batsim
protocol

Results

SchedulerBatsim

Inputs

Uses

SimGrid

Simgrid Platform

Simgrid Platform
Pescription

Figure 4.3.: Batsim overview, the scheduler takes decisions from the network protocol. The
simulation inputs are a platform description and a workload of jobs handled
by Batsim. The simulated platform is handled by SimGrid. The results of
a simulation comprises data about the simulation, such as jobs resources
allocations and execution times.

Batsim Scheduler

new job: j1

scheduling

ack

job finished: j1

execute: j1

new job: j2

execute: j2
scheduling

scheduling

Figure 4.4.: Example of a simplified exchange between Batsim and the scheduler taking
the scheduling decisions. The protocol is based on request-answer, Batsim
waits for a response for each request (the grey, and white layers represent a
request-answer phase). Batsim sends events to the scheduler, such as new job
submissions, or job completions. The scheduler takes all scheduling decisions.

4.2 The Batsim Approach 51

4.3 Job Execution Profiles
A job execution profile is an additional information specifying the model used
for the job simulation. Depending on the model, the jobs can adopt different
behavior during the simulation. Batsim provides different profiles based on SimGrid
application models.

This section presents the profiles available in Batsim and proposes a preliminary
evaluation of the different job models.

4.3.1 Profile Types

The considered profile types are:

• Delay profile.

• Parallel Task Profile (Ptask).

• Time Independent Trace (TiT) profile.

• Sequence profile.

Delay Profile

The profile delay is the simplest one. Executing the job consists of considering the
execution of the job as a predefined amount of time during which the nodes of the
job will be occupied. This profile is commonly used in scheduling simulations for
its simplicity and its accessibility. It requires no information about the job resource
usage, only the time the job spent in the system. For instance, RJMS logs provided
by Parallel Workload Archive directly feature the running time of the job which can
be directly adapted into a profile delay. Job delay is also the most scalable Batsim
profile as it requires no extra computations.

The jobs simulated with this profile have a processing time independent of their
execution context. If multiple jobs share the same network, their running time will
remains the same as defined in the workload. This profile can be used in scenario
were the context of execution of the jobs does not impact their execution times, or
if the scalability of the simulation is a key objective. This is the case, for instance,
for homogeneous cluster with no network interference, or for workloads composed
of only sequential jobs (jobs using a single node) without co-location of jobs In a
broaden way, this is the case when jobs don’t have access to shared resources, which
remains marginal as most cluster have a shared Parallel File System.

52 Chapter 4 Scheduling Simulation with Job’s Models

Parallel Task Profile

This execution profile provide a way to use the parallel task model (ptask) featured
by SimGrid for the jobs. The profile requires two inputs. A vector specifying the
amount of computation to perform on the allocated hosts. The second input is a
matrix of communication, the matrix declare the data quantity that needs to transit
between one host to another. The number situated at line i and the column j gives
the quantity of data to send from host i to host j, as shown in figure 4.1.

This model is detailed in section 4.2.2 and gives a way to simulate parallel jobs.
However it relies on the hypothesis that all jobs behave the same way and that
the behavior of a job does not evolve during its execution. For instance, for an
application that have an iterative pattern, such as consecutively performing the
different phases of communications and then computations, this profile may smooth
the effect merging the different phases into a long phase. Hence, the iterative
behavior of this job is not captured with this model.

This profile bring interesting perspective for the simulation of scheduling algorithm.
The jobs of the simulation are responsive to their environment, and their simulation
times depends on the description of the platform and on the other jobs using the
platform at the same time. Using this model for scheduling simulation enables to
observe effects such as network interference.

Time Independent Trace (TiT) Replay with SMPI

Batsim provides an execution profile enabling to use TiT replay as job profile during
the simulation, this model is detailed in section 4.2.2. The trace must be provided
with the profile.

Sequence Profile

Lastly, the sequence model (or composed) enables to chain profiles to execute them
in sequence. A number of repetition can also be specified. This profile inherits the
properties of the profiles it is composed of. The main purpose of this model is to
specify different job behaviors. For instance, as stated in section 4.3.1, the ptask
model assumes that the application has the same behavior throughout its execution
and therefore can fail to capture bursty effects. Sequence profiles have the ability to
render more complex application behavior by composing different models. However,
its computation time can increase as the number of profiles of a profile increases
(especially with ptask and the TiT).

4.3 Job Execution Profiles 53

4.3.2 Profiles Evaluation
The multiple profiles featured in Batsim enable to set up different experiments
depending on the effect(s) that the simulation should capture.

On the one hand, the delay is the simplest and fastest profile, however the number of
effects that we can observe with this profile is limited, observing network interference
for instance is not possible. On the other hand, the time independent trace replay is
an heavy models that enable to observe many effects on the executions of the jobs.
This model is precise and has been evaluated by the SimGrid community, however it
has been principally designed for study focusing on one application, and may not
be scalable to study thousands of applications as it is necessary for RJMS studies.
Alternatively, the Ptask model proposes an higher abstraction that bundles all the
activities of an application (computations and data transfers) into an homogeneous
model that is more scalable.

To illustrate the different models and their trade-offs between performances and
the captured effects we set up an experimental setting with Batsim. We study two
scheduling algorithms using the same input workloads — same number of jobs,
same arrival date, same number of requested resources — with different execution
profiles.

Experimental Setup

For the schedulers we use a simple scheduling algorithm, First Come First Serve
(FCFS) under two declinations. Note that keep the experiment simple, we don’t
use backfilling, which is an improvement commonly used in production RJMS —
backfilling is detailed in chapter 3. The first declination restricts the resources
allocated for a jobs to a contiguous set of machines (forced contiguity) [Luc+15].
The contiguity of an allocation tends to decrease the number of switches used by the
job if the machines are numbered in increasing order by switch, at the cost to not
use all the free available resources if the allocation conditions are not fulfilled. The
second declination has no restriction on the allocated resources (free allocation).
FCFS is a simple scheduling algorithm that prioritizes all waiting jobs by order of
submission (more recent jobs have a lower priority). A job can be executed on the
allocated resources only if it is the first in the waiting queue and if enough resources
are available. Both algorithm are available in the batsched1 project, which is a
tunable scheduler made for Batsim.

The method used to generate the workloads is described in the 9th chapter of the
book [Fei15b]. The arrival times of the jobs follows the Weibull distribution. We
generate two workloads, the first is composed of 512 jobs and the second is composed

1https://gitlab.inria.fr/batsim/batsched

54 Chapter 4 Scheduling Simulation with Job’s Models

https://gitlab.inria.fr/batsim/batsched

of 1024 jobs. Each workload contains three different kinds of jobs using 8, 16 and
32 resources representing the ft application available in the NAS parallel benchmark
suits (NPB) [Bai+91]. The ft application is available for different numbers of
resources, the jobs using 8 resources use ft.C.8, ft.C.16 is used for the 16 resources
jobs and ft.C.32 for the 32 resources jobs.

This objective of this experiment is to illustrate the different profiles with a concrete
example. Each workload contains the same number of identical jobs (same arrival
times, same number of requested resources), only the job execution profiles are
different. The first version uses the TiT replay profile, the second workload version
uses the ptask profile while the last version uses delay profiles.

SimGrid can directly generate a TiT from a SMPI simulation, therefore the generation
of the Tit profiles is made by executing the ft application with SMPI.

To generate the ptask profiles we need two information. The first information is the
total amount of computations (in flops) executed on each resources of the jobs. This
information can be extracted directly from the TiT(s). The second mandatory infor-
mation is the communication matrix (depicted in 4.1). The TiTs contain details about
the communications made by the application, however the precise communication
matrix cannot be directly extracted from the TiT(s). This is mainly due to the fact
that the TiT contains the high level operations made by the traced application such
as send and receive, or the collective name (broadcast, reduce etc). In the case of
the broadcast collective for instance, the precise communication matrix depends on
the underlying algorithm used to achieve these high level communication collectives.
To extract the communication matrix we replayed the TiT application using SMPI (in
SimGrid) with the tracing activated. The SimGrid tracing is able to generates a trace
of the execution of the TiT replay into a different format (paje [KOB00]) containing
the detailed point-to-point communications.

Finally, the only information needed to generate the delay profiles is an execution
time. Similarly to the ptask profile generation, we execute the TiT application with
SimGrid and we use the time predicted by TiT the simulation as execution time for
the profile.

The platform used for the simulation is modeled from the Graphene cluster, which
was part of the Grid’5000 test-bed2. The calibration values are obtained from the
SimGrid project3. Figure 4.5 depicts the network topology of the platform. On
this platform we observe different network contention points. The first contention
point is at the machine level, if two nodes under the same cabinet sends data to
each other, max bandwidth capacity (of 1 G) can be reached. The second possible

2Unfortunately, the platform has been removed from Grid’5000
3More details can be found about the graphene calibration at https://simgrid.org/contrib/smpi-

saturation-doc.html

4.3 Job Execution Profiles 55

https://simgrid.org/contrib/smpi-saturation-doc.html
https://simgrid.org/contrib/smpi-saturation-doc.html

contention point is inside a cabinet, if we group all machine in pair and each pair
communicates with each other, the switch of the cabinet can be overloaded. The last
contention point is located between cabinets, if all the machines from the cabinet 1
(for instance) communicate with a different machine of the 2nd cabinet, the capacity
of the top link of 10 G bit can be reached.

Switch

10G Ethernet Link

1G Ethernet Link

Machines 1-39 Machine 40-74 Machines 75-104 Machines 105-144

x39 x34 x29 x39

Figure 4.5.: Network topology of the Graphene platform. The platform is organized in 4
irregular cabinets, connected to a top switch with a 10 G Ethernet link.

Results

In the first place, we take a look at the simulation’s performance. Figure 4.6
compares the time took to run the full workloads on a personal laptop with a
processor Intel(R) Core(TM) i7-7820HQ CPU @ 2.90GHz. The first thing to notice, is
that the SMPI model using the TiT traces is the slowest model (more than 50 s for
the 512 jobs workloads and between 125 to 175 for the workload containing 1024
jobs). The delay and ptask profiles are faster to simulate, for the 512 jobs workloads
the simulation took less than 1 second, and less than 2 seconds for the 1024 jobs
workloads. Additionally, we observe that the simulation time also depends on the
scheduling algorithm used within the simulation. This is especially the case when
considering the TiT execution profiles, the ptask are also impacted by the scheduling
algorithm used, whereas the profiles delay are not impacted by this factor.

Secondly, we take a look at the results of the simulations. Figure 4.7 shows the
Gantt charts of the jobs scheduled during the simulations. Figure 4.8 shows the
distribution of the running times and waiting time of the jobs for each of the different
execution profiles and scheduling and scheduling algorithms. From the Gantt charts
figures we can see that both the ptask and the TiT profiles we see that changing
the allocation policy has a visible impact on the resulting schedule. In particular,
the allocation policy seems to have a negative impact of the waiting time of the job

56 Chapter 4 Scheduling Simulation with Job’s Models

0

50

100

150

512 1024
Workload size (jobs)

A
ve

ra
ge

 s
im

ul
at

io
n

du
ra

tio
n

(s
ec

on
ds

)

0.0

0.5

1.0

1.5

2.0

512 1024
Workload size (jobs)

A
ve

ra
ge

 s
im

ul
at

io
n

du
ra

tio
n

(s
ec

on
ds

)
Configuration

Delay − Contiguity forced
Delay − Contiguity not forced
Ptask − Contiguity forced

Ptask − Contiguity not forced
Tit − Contiguity forced
Tit − Contiguity not forced

Figure 4.6.: Mean (the error bar are the standard deviation) of the (real world) duration
for the simulation of the entire workload over 10 different executions. The
figure on the right zooms over the delay and the ptask profiles.

when the contiguity is not forced. This can be explain by the fact that the forcing
the contiguity provides a better jobs placement leading to lower execution time of
the jobs, this effect is visible when comparing the histogram of the execution time in
figure 4.8.

On the other hand, the delay profiles have similar results when comparing the two
scheduling algorithm. This is expected as the execution time of a job does not
depends on its placement on the platform nor on the other jobs executing at the
same time.

4.3 Job Execution Profiles 57

C
ontiguity forced

D
elay

C
ontiguity not forced

D
elay

C
ontiguity forced

P
task

C
ontiguity not forced

P
task

C
ontiguity forced

T
it

C
ontiguity not forced

T
it

0 1000 2000

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100

Time (in seconds)

R
es

ou
rc

es

0 20 40 60 80
Waiting Time

Figure 4.7.: The figure presents only the schedules for the workload containing 512 jobs.
Each Gantt chart depicts the scheduling decisions taken by the scheduler
process, the first two upper charts correspond to the profile of execution delay,
followed by the ptask execution profile. The last two charts on the bottom are
the Gantt charts obtained with the TiT profiles.

58 Chapter 4 Scheduling Simulation with Job’s Models

ft.C.16 ft.C.32 ft.C.8

D
elay

P
task

T
it

30 40 50 60 70 80 20 30 40 50 60 70 90 11
0

−0.50
−0.25

0.00
0.25
0.50

−0.50
−0.25

0.00
0.25
0.50

−0.25
0.00
0.25

Running Time (seconds)

de
ns

ity

ft.C.16 ft.C.32 ft.C.8

D
elay

P
task

T
it

0 25 50 75 0 25 50 75 10
0 0 25 50 75

−0.2
−0.1

0.0
0.1
0.2

−0.1

0.0

−0.15
−0.10
−0.05

0.00
0.05

Waiting Time (seconds)

de
ns

ity

sched Contiguity forced Contiguity not forced

Figure 4.8.: Histogram of the waiting times and execution times for the different profiles.
ft.C.8 takes 8 machines for its execution, ft.C.16 takes 16 machines, and
ft.C.32 takes 32 machines. The histogram on the left shows the distribution
of the running time per profile, the x-axis is the running time in seconds. The
histogram on the right shows the distribution of the waiting times. The color
shows the different scheduling algorithm used, forced contiguity in purple
(bottom) , not forced contiguity in blue (upper histogram).

4.3 Job Execution Profiles 59

4.4 Conclusion
In this chapter, we state that scheduling simulation should be enhanced to capture
effects occurring in real platforms. For example, simulation taking into account the
platform topology in our simulation by simulating the network interference of the
jobs, the different host computation speed, the energy consumed by a platform, or
the IO contention.

We present Batsim and develop why it is a good candidate to create scheduling
simulations that can capture a wide range of effects depending on the jobs, or the
platform itself thanks to the SimGrid simulation capabilities. Batsim provides a way
to customize the models used to simulate the jobs of the simulation thanks to the
profiles implemented in Batsim and leveraging SimGrid. The different profiles are,
the profile delay, TiT, and ptask, and composed. Each profile has its own set of
advantages and limitations, for instance, the profile delay — which is the more simple
— can be used to achieve fast simulation, but lacks to capture effects such as network
interference. On the other hand, the TiT profile can render interference effects at
the price of higher simulation runtimes. Ptask is a good compromise, it shows better
computation times while capturing different effects such as interferences.

To compare each model, we created a synthetic workload and create a variant of
this workload for each of the three profiles, delay, TiT, and ptask. Next, we use two
scheduling algorithms to compare the behavior of each model, one of the scheduling
algorithm used can provide better job allocation. We observe that with the ptask and
TiT models we observe a higher running time of the jobs — due to a bad allocation
on the cluster, the job durations increase — generating higher waiting times.

TiT profiles present good simulation capabilities and has been the object of many
scientific publications from the community to validate it. However, it is a heavy model
and has high computation time hindering the scalability of scheduling simulations
— thousand of jobs in less than one hour if possible. One alternative is to use
the ptask model, which can capture different effects of a real platform (network
interference, CPU speed) but that presents lower computation times. Unlike TiT, the
ptask model has been featured by SimGrid without — to the best of our knowledge
— validation.

While the delay execution profile is fast to compute, the main limitation of this
profile is that it cannot render effects that appear on the computing platform, such
as network interferences. From this experiment, we can see that the ptask model is
at least 100 times faster than the TiT profiles while we can observe different effects
such as network interferences.

While the model ptask is interesting as it proposes a way to simulates different
applications it a high level of abstraction with reasonable computation time. However,

60 Chapter 4 Scheduling Simulation with Job’s Models

the ptask model the ability of the model to predict the behavior of an HPC application
has not been evaluated yet. This lack of evaluation hinders the trust we should put
in the results of the Batsim simulations using this model. Furthermore, the following
elements should be evaluated with the ptask model.

• Can the ptask model accurately predicts the running time of the applications
on a platform, under perfect conditions (application alone on a cluster), and
with several applications on the platform (with resources conflicts)?

• It exists a wide range of different HPC applications. Which applications are
best represented with a ptask?

4.4 Conclusion 61

5Ptask Model Validation

5.1 Introduction

The previous chapter introduced the different job profiles available in Batsim. As
seen in section 4.3, the ptask model is able to simulate different effects such as
network interferences, while providing reasonable simulation times. Therefore the
ptask model is a good candidate to be used as a job model for scheduling simulations.
This chapter focuses on the validation of the ptask model.

The ptask model has been used to simulate workload composed of data-intensive
applications, and simulate the inputs and the outputs of the cluster [Mer19]. How-
ever, to the best of our knowledge, this model has not been tested against real HPC
applications, and its soundness is yet to prove. In this work, we are interested in
evaluating the capacity of the ptask model to capture the behavior of HPC applica-
tions. This validation is important to increase the trust of our scheduling simulations.
We compare the ptask model to an HPC application performing a matrix product in
parallel on a real cluster, implemented with MPI.

This model simulates a parallel task (such as an HPC application) at a high level.
It considers only the total of computations and communications made by the ap-
plications. A ptask performs work on a set of allocated resources of the simulated
platform. The work can be either an amount of data that needs to transit between
each host of the parallel task, or an amount of computation to perform on each
host. Computations and communications are combined by the ptask model to be
computed together.

Ptask supposes that the advancement of the task is homogeneous between all
computations and communications and that the overall advancement of the task is
limited by the bottleneck of any of the resources used by the ptask. The advancement
of a ptask depends on three different parameters. The input given to the model is
a number of computations and communications to execute on the platform. For
instance, if another activity (a ptask for instance) uses the same link, it may impact
the speed of the ptask and slows its progress forward. A detailed explanation of the
ptask model is provided in chapter 4.

63

5.2 Experiment Methodology

Our methodology aims at validating if the behavior of a ptask under a congested
network (on simulation) corresponds to the behavior of an HPC application with the
same congested network (on a real platform). In other words, we aim to validate
the interference model of the ptask model. To do this analysis, we execute an HPC
application on a real platform onto which we generate controlled network traffic to
create network interference. Then the same conditions are reproduced in simulation
with a ptask.

In a production system, the application executions might be impacted by the network
interferences induced by the other jobs, however, the jobs do not start (or end)
necessarily at the same moment, and two different applications can have two
different network usage patterns. To reproduce these effects, during the experiments,
we generate different interference patterns by alternating between idle phases and
creating network interferences (interference phases). However, unlike a production
system, where the network interferences can be sporadic and unpredictable we
choose to use a regular pattern to increase the reproducibility of the experiments.

As explained in section 4.2.2, the ptask model bundles the computation and the
communication and smoothes the advancement of the task. Thus, we compare a
ptask to an HPC application that shows a close behavior. We choose the application
PDGEMM [AGZ94; FOH87] because it has a regular pattern for its whole execution.
PDGEMM performs successive phases of communications (broadcast) and compu-
tations until it finishes. Additionally, PDGEMM is a real HPC application which is
simple enough to be modeled properly with the ptask.

The next section details the PDGEMM application. Section 5.4 details the experi-
mental setup to create controlled interferences and execute PDGEMM on two real
clusters. Section 5.5 details the results of the real experiments on two real clusters.
Section 5.6 describes how we simulate PDGEMM with the ptask model. Finally,
sections 5.7 and 5.8 evaluate the ptask model by comparing the real executions with
simulations. The remaining chapter opens a discussion (section 5.9) about the ptask
model for scheduling simulation before concluding in section 5.10.

5.3 Parallel Matrix Multiplication (PDGEMM)

PDGEMM computes a product of two matrices (A and B of size n× n) in parallel (on
different processes) and stores the result into a third matrix (C). PDGEMM has two
modes, blocking broadcast and nonblocking broadcasts:

64 Chapter 5 Ptask Model Validation

• The first mode, detailed in section 5.3.1, performs sequentially: 1) blocking
communications, and 2) then blocking computations. These two actions are
repeated until the application completes.

• The second mode (detailed in appendix A.1.1), performs the communications
(i.e., data transfers) in background of the computations. All the data transfers
needed for the next computation phase occur during the current computation
phase — except for the first data transfer required for the first computation
which is necessarily blocking.

The last parameter is the number of subdivisions, it adds the possibility to create
subdivisions of the matrices block managed by each process. This parameter is
detailed in section 5.3.2.

5.3.1 PDGEMM Algorithm
The PDGEMM algorithm is depicted in algorithm 3. Each process holds a different
block of the matrices A and B (none of the processes disposes of the whole matrix).
The resulting matrix C also is distributed among the different processes. For P
processes, the matrices are divided into

√
P blocks of size n2/P . The process p holds

the blocks situated on the block line p/
√
P and the block column p mod

√
P of the

matrix A, B, and C.

Each process belongs to three groups. The first group corresponds to the id of the
line of its block in the matrix A, and the second group corresponds to the id of the
column of its block in matrix B. Separating the processes into groups enables to use
of MPI’s collectives on the member of the groups, for instance, one can perform a
broadcast only between the group members. Inside each group, the processes are
identified by a unique id. Process number p (the world group) belongs to the groups
p/
√
P for the lines and to the group p mod

√
P for the columns.

The algorithm performs
√
P iterations, in which each process p computes a partial

sum of its result blockp
C . At the iteration k, each process with the id k in its group

line broadcasts its blockA, the process with the id k in its group column broadcasts
its matrix blockB. Figure 5.1 depicts the communications made at iteration k. Each
process then computes the partial sum of the block matrix C with the broadcasted
blocks. At the end of all iterations, the matrix C blocks correspond to the product
between A and B.

5.3 Parallel Matrix Multiplication (PDGEMM) 65

Algorithm 3 Parallel Matrix Multiplication (PDGEMM). Each process of the applica-
tion executes this function.

1: procedure PDGEMM(id_ranks,world_size,matrix_blockA, matrix_blockB)
2: q ←

√
world_size

3: row_group← id_rank/q . Row group of the process
4: col_group← id_rank mod q . Column group of the process
5: group_row_id← get_id(row_group) . Process unique id in its row group
6: group_col_id← get_id(col_group) . Process unique id in its col group
7: resC ← [block_length× block_length]
8: bufferA ← [block_length× block_length]
9: bufferB ← [block_length× block_length]

10: for i← 0, i <
√
world_size, i+ + do

11: root_col← k mod q; . Determines the broadcast source for blockA

12: root_row ← k mod q; . Determines the broadcast source for blockB

13: if group_row_id == root_row then
14: broadcast_on_lines(matrix_blockA, source = True)
15: else
16: broadcast_on_lines(bufferA, source = False)
17: end if
18: if group_col_id == root_col then
19: broadcast_on_cols(matrix_blockB, source = True)
20: else
21: broadcast_on_cols(bufferB, source = False)
22: end if
23: if group_row_id == root_col & group_col_id = root_row then
24: resC ← resC +matrix_blockA ∗matrix_blockB

25: else if group_col_id == root_col then
26: resC ← resC + bufferA ∗matrix_blockB

27: else if group_row_id == root_row then
28: resC ← resC +matrix_blockA ∗ bufferB

29: else
30: resC ← resC + bufferA ∗ bufferB

31: end if
32: end for
33: end procedure

66 Chapter 5 Ptask Model Validation

Broadcast on rows

Broadcast
on columns

Matrix A Matrix B

1,kP

2,kP

3,kP

k,1P k,2P k,2P

Figure 5.1.: At iteration k, the processes on the kth line broadcast their block to the other
processes of their line for the matrix A. Once the fist broadcast is done, the
processes on the kth column broadcast their block to the other process of their
column.

5.3.2 Matrix Block Subdivision

The last modification of the PDGEMM algorithm is to add the possibility to divide
the block of the matrix managed by each process into several sub-blocks.

Creating sub-blocks has the advantage of reducing the memory amount consumed
by each process because the buffers used for receiving the matrices A and B only
need to store the sub-block instead of the whole block. Increasing the number of
matrix blocks sub-division increases the total number of iterations, but decreases the
number of size of the computation and communications done at each iteration.

However, the application will perform more — but smaller — iterations. The number
of iterations is

√
P ∗S, with P the number of the process involved and S the number

of subdivisions of a block. At each iteration, the processes send (or receive) a subpart
of the whole block and perform the multiplication on this subpart.

5.3.3 PDGEMM Resources Consumption Behavior

In summary, PDGEMM is a regular application executing the same actions until
completion. Two modes are available for the communications: Blocking broadcasts
and nonblocking broadcasts. The last parameter enables to change the number of
subdivisions of the block managed by each process.

All these parameters affect the resource consumption of PDGEMM during its exe-
cution. For instance, with the number of sub-divisions set to 1 with nonblocking
broadcast PDGEMM application have a chaotic network consumption because of the
large data sizes send over the network. Thus, such behavior is difficult to predict
with a ptask which models a homogeneous behavior

5.3 Parallel Matrix Multiplication (PDGEMM) 67

5.4 Real Experimental Setup
This section presents the experimental setup necessary to study the PDGEMM on two
real clusters. First we present the experimental setup created for the experiments.
This setup enables to control the network, generate network interferences during
the execution of PDGEMM and to gather data about the execution.

5.4.1 Platform and Nodes Configuration

To run the application, we have access to the Grid’5000 infrastructure. However,
Grid’5000 does not provide a platform with a network that can easily be saturated,
which is required if we want to observe network interferences. To cope with this
problem, we create an experimental setup on two available clusters from Grid’5000:
Paravance, and Grisou. The setup is common to the two platforms. In this setup, we
force communications between two sets of nodes to pass through a unique node.
This setup enables to study our application under a congested network. The different
processes of the MPI application are distributed among the two sets of nodes. During
the execution, we create network traffic from one node set to the other to saturate
the routing node.

This setup requires that all the nodes are located under the same network switch.
The nodes are divided into three groups of machines, the first group is composed
of a single node that will act as a router. The remaining nodes are allocated in
one of the two other groups, that will be used as computing nodes for the MPI
application. We create one subnetwork per computing group, and we attribute an
address to every node in the group, the routing node has two network interfaces, on
per group. Figure 5.3 shows an example of this configuration with 6 nodes and two
subnetworks.

The last configuration is to force the communications from one subnetwork to
another to pass through the routing node. This is done by configuring the routing
table of each node of the two groups.

5.4.2 PDGEMM and MPI Configuration

One switch has 35 connected nodes. Each node of Paravance is equipped with two
Intel Xeon E5-2630 v3 (Haswell, 2.40GHz, 8 cores).

256 cores configuration The PDGEMM application is executed on the set of com-
puting nodes (split into the two sub-networks as described in the previous section).
With 35 nodes, we use 8 nodes per subnetwork for a total of 16 nodes for the
PDGEMM application. On each node, we run 16 processes, 1 process per physical
core for a total of 256 cores for the whole application.

68 Chapter 5 Ptask Model Validation

Routing node

Switch

Nodes group 2
(10.158.4.0/22)

Nodes group 1
(10.158.0.0/22)

10.0.4.110.0.0.110.0.0.2

ef0 ef1

10.0.0.3

ef0 ef1 ef0 ef1

10.0.0.4 10.0.4.2

ef0 ef1

10.0.4.3

ef0 ef1 ef0 ef1

10.0.4.4

(a) Physical view of the installation. All 6 nodes are connected to the same switch. Nodes are
distributed across two subnetworks: 10.0.0.0/22 and 10.0.4.0/22. The ef0 interfaces of
the computing nodes are disabled. Each link from a node to the switch has a bandwidth of
1.25 Gigabytes/s

Routing node

Nodes group 2
(10.158.4.0/22)

Nodes group 1
(10.158.0.0/22)

10.0.4.110.0.0.1

10.0.0.2

ef0 ef1

10.0.0.3

ef0 ef1 ef0 ef1

10.0.0.4

ef0 ef1 ef0 ef1 ef0 ef1

10.0.4.2 10.0.4.3 10.0.4.4

(b) Logical view of the installation. The nodes in the same subnetworks communicates using the
switch, while the communication between the subnetwork are forced to pass through the routing
node. The routing node has two addresses, each into a different subnetwork so it can join nodes
from both subnetwork. Activating ip forwarding enable the routing nodes to transfer packets from
one subnetwork to the other.

Figure 5.2.: Final configuration for the experiment. Figure 5.2a depicts the physical setup
of the nodes, while the fig. 5.2b shows the logical view we achieve.

The matrix size is 6.4 ∗ 108 (with n = 8 ∗ 104). Every process of the application
has in its memory 5 matrix blocks (blockb, blockA, blockC , and two buffers for
the communications). Each process uses 1GB of memory, for a total of 16GB per
computing nodes.

The last parameter we need to tune is the placement of the matrix blocks over the
cluster. For our use case, we want to measure the impact of network interference
on our application, so we choose to spread the matrix blocks over the nodes with
a random policy, in this way we create a placement that should be bad enough to
saturate the routing node.

5.4.3 Controlled Interferences

To create interferences, we use a load generator software named Tcpkali1. Tcpkali is
an application that implements a client and a server that is able to generate a load
on a network.

1https://github.com/satori-com/tcpkali

5.4 Real Experimental Setup 69

https://github.com/satori-com/tcpkali

The load is generated by the client by repeatedly sending the same message during
the activity. The server can be configured to have the same behavior. When a client
is connected to a server, it can be configured to create a number of TCP connections
and will create as many connections between the server and the client. Tcpkali is
multi-threaded and uses all the threads of the nodes to increase the generated load.
With a single client and server, Tcpkali is able to reach the max bandwidth of the
network link (fig. 5.3a).

packets received / s packets transmitted / s

bytes received / s bytes transmited / s

0 10 20 30 40 0 10 20 30 40

0.00e+00

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

0

250000

500000

750000

1000000

0.00e+00

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

0e+00

3e+05

6e+05

9e+05

time

fa
ce

t v
al

ue

(a) Traffic monitored on the routing node with one client and one server Tcpkali (100 tcp con-
nections) for 30 seconds. The client is executed on a node of the first subnetwork, and the client
on a node of the other subnetwork. All the traffic passes through the routing node. Tcpkali is able
to reach max link capacity (1.25 Gigabytes/s) during the whole execution.

received bytes / s transferred bytes / s

10s interfernence / 10s idle
30s interfernence / 30s idle

0 100 200 300 0 100 200 300

0.00e+00

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

0.00e+00

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

Time (in seconds)

Fa
ce

t v
al

ue

(b) Monitored network activity on the routing node with two different interference patterns.
The upper line of the grid shows a pattern alternating between 30s of idle times and 30s of
interference. The lower line shows the same pattern, but with 10 seconds.

Figure 5.3.: Tcpkali evaluation (upper figure). Interference pattern examples (lower figure).

70 Chapter 5 Ptask Model Validation

During the experiment, we create different interference patterns by generating peri-
ods in which we alternate between idle time and network interference. Figure 5.3b
shows the network traffic on the routing nodes under two interference patterns. One
server is started on a node of the group 1 and remains active the whole experiment,
when there is not client the server waits. The pattern is created by starting and
stopping repeatedly a client on a node of group 2. The client first connects to the
server and generates load for a period of time, when the time is over the client is
then stopped leaving the server is a state where it is waiting for new connections.
One script, executed on group 2 is in charge of starting, and stopping the client, and
during idle phases, sleeping.

5.4.4 Monitoring

On each node of the experiment we use MojitO/S2, an open-source monitoring
software which can poll a wide range of metrics from different sources of the node it
is executed on. In our case, we use MojitO/S to poll information about the network
interfaces on the experiment’s nodes.

5.5 Results and Data Analysis of the Real
Executions

This section details the results of the experiment on Paravance and Grisou. In the
first place, we present a detailed view of the Paravance experiments to explicit the
resource consumption of PDGEMM. Secondly, we show the results obtained for the
Grisou platform. Finally, we illustrate the difference between the two clusters.

5.5.1 Results Analysis for Paravance

Figure 5.4 plots the running times for each configuration on Paravance, note that
each configuration is executed 5 times on G5K to cope with system variability. In
the first place, we notice the running time of the application is sensitive to network
interference, and all configurations have the same behavior — more interference
means higher running time. On the other hand, we observe that jumping from no
subdivisions to 50 block subdivisions (block subdivision is detailed in section 5.3.2),
the nonblocking broadcasts become less efficient and the blocking broadcasts bring
better running time.

Table 5.1 presents the mean runtime for each configuration (along with the standard
deviation). Both the figure and the table show that the application execution is
slowed with interferences. From the results table, we can observe that constant

2https://sourcesup.renater.fr/www/mojitos

5.5 Results and Data Analysis of the Real Executions 71

https://sourcesup.renater.fr/www/mojitos/

interference slows the execution in the same way for every broadcast and subdivision
configuration — around 15 %, the max is 16 % and the min 14 %.

Broadcast Subdivision Interference Mean runtime(s) Standard dev Increase %

Blocking

No subdivision

No interference 450.42 0.76
15s interference / 45s idle 469.19 0.41 4.17
15s interference / 15s idle 484.57 1.37 7.58
30s interference / 30s idle 480.31 1.05 6.64
45s interference / 15s idle 492.76 2.35 9.40

Constant interference 513.93 0.93 14.10

50 subdivision

No interference 346.08 1.33
15s interference / 45s idle 360.37 0.64 4.13
15s interference / 15s idle 373.85 0.98 8.02
30s interference / 30s idle 374.13 1.43 8.11
45s interference / 15s idle 388.59 1.23 12.28

Constant interference 402.69 1.20 16.36

Non blocking

No subdivision

No interference 384.06 4.11
15s interference / 45s idle 395.39 3.04 2.95
15s interference / 15s idle 409.19 5.16 6.54
30s interference / 30s idle 407.61 2.37 6.13
45s interference / 15s idle 421.66 4.12 9.79

Constant interference 434.65 2.10 13.17

50 subdivision

No interference 374.29 1.59
15s interference / 45s idle 389.57 0.84 4.08
15s interference / 15s idle 403.58 1.63 7.83
30s interference / 30s idle 403.35 0.97 7.76
45s interference / 15s idle 416.79 1.90 11.35

Constant interference 430.49 1.10 15.01

Table 5.1. Mean runtime of all PDGEMM executions for each configuration (number of
subdivisions, interference patterns and broadcast types) on Paravance. The last
column is the percentage of increase compared to the execution of the same
category without interference.

Between blocking and nonblocking broadcasts, we observe that the subdivisions
impact more the blocking broadcast (up to a difference of 2 %), more subdivisions
increase the slowdown. Whereas for nonblocking broadcast the number of divisions
has a lower impact. Moreover, the configuration with blocking broadcast and no sub-
division is globally less impacted by the interferences than the other configurations.
This is because no subdivisions imply longer phases of calculation and communica-
tion, and during a computation phase, no transfer is performed. Figure 5.5 shows
the network traffic recorded for the blocking broadcast, as each configuration has
been run 5 times, the figure only shows one of the five runs for each configuration
(interference pattern and subdivisions). The upper figure shows that periodically,
the network is not used by the application, the periods of inactivity correspond
to the computation phases. On the other hand, the lower figure shows that when
subdividing the matrix the application performs more (but smaller) phases, that
homogenize the network usage. Hence, with 50 subdivisions the application is
sensitive to the network interference during its whole execution.

As figure 5.5 for blocking broadcast, figure 5.6 shows the network traffic for non-
blocking broadcasts. One can observe that, for both blocking and nonblocking
broadcasts, using a number of 50 subdivisions increases the homogeneity of the net-

72 Chapter 5 Ptask Model Validation

Immediate broadcast

Blocking broadcast

350 400 450 500

Constant interference

45s interference / 15s idle

30s interference / 30s idle

15s interference / 15s idle

15s interference / 45s idle

No interference

Constant interference

45s interference / 15s idle

30s interference / 30s idle

15s interference / 15s idle

15s interference / 45s idle

No interference

Application running time (s)

In
te

rf
er

en
ce

 p
at

te
rn

nb_sub No subdivision 50 subdivisions

Figure 5.4.: Mean runtime of PDGEMM under different interference patterns and
broadcasts (blocking or nonblocking).

work traffic, leading to more stable executions. In the case of nonblocking broadcast
the network is always used but chaotically (this can also explain the higher standard
deviation visible in table 5.1).

Blocking and nonblocking broadcast using the configuration with 50 subdivisions
presents a better fit for the ptask model. With these configurations, the application
network usage is homogeneous, which corresponds to the ptask model. Indeed,
the ptask model assumes that the application’s progress during the execution is
homogeneous.

5.5 Results and Data Analysis of the Real Executions 73

45s interference / 15s idle Constant interference

15s interference / 15s idle 30s interference / 30s idle

No interference 15s interference / 45s idle

0 200 400 600 0 200 400 600

0.00e+00
2.50e+08
5.00e+08
7.50e+08
1.00e+09
1.25e+09

0.00e+00
2.50e+08
5.00e+08
7.50e+08
1.00e+09
1.25e+09

0.00e+00
2.50e+08
5.00e+08
7.50e+08
1.00e+09
1.25e+09

Time (s)

tr
an

sf
er

re
d

by
te

s
(b

yt
es

/s
)

src MPI (only one host) Router (eno1) Tcpkali

(a) Network traffic monitored with blocking broadcast and no subdivisions.

45s interference / 15s idle Constant interference

15s interference / 15s idle 30s interference / 30s idle

No interference 15s interference / 45s idle

0 100 200 300 400 500 0 100 200 300 400 500

0.00e+00
2.50e+08
5.00e+08
7.50e+08
1.00e+09
1.25e+09

0.00e+00
2.50e+08
5.00e+08
7.50e+08
1.00e+09
1.25e+09

0.00e+00
2.50e+08
5.00e+08
7.50e+08
1.00e+09
1.25e+09

Time (s)

tr
an

sf
er

re
d

by
te

s
(b

yt
es

/s
)

src MPI (only one host) Router (eno1) Tcpkali

(b) Network traffic monitored with blocking broadcast with 50 subdivisions.

Figure 5.5.: Paravance. Network traffic monitored on one MPI host, and on tcpkali server’s
host for blocking broadcast. The upper figure plots one instance for each
interference pattern without subdivision, whereas the lower figure plots it with
50 subdivisions.

74 Chapter 5 Ptask Model Validation

45s interference / 15s idle Constant interference

15s interference / 15s idle 30s interference / 30s idle

No interference 15s interference / 45s idle

0 100 200 300 400 500 0 100 200 300 400 500

0.00e+00
2.50e+08
5.00e+08
7.50e+08
1.00e+09
1.25e+09

0.00e+00
2.50e+08
5.00e+08
7.50e+08
1.00e+09
1.25e+09

0.00e+00
2.50e+08
5.00e+08
7.50e+08
1.00e+09
1.25e+09

Time (s)

tr
an

sf
er

re
d

by
te

s
(b

yt
es

/s
)

src MPI (only one host) Router (eno1) Tcpkali

(a) Network traffic monitored with nonblocking broadcast with no subdivisions.

45s interference / 15s idle Constant interference

15s interference / 15s idle 30s interference / 30s idle

No interference 15s interference / 45s idle

0 100 200 300 400 500 0 100 200 300 400 500

0.00e+00
2.50e+08
5.00e+08
7.50e+08
1.00e+09
1.25e+09

0.00e+00
2.50e+08
5.00e+08
7.50e+08
1.00e+09
1.25e+09

0.00e+00
2.50e+08
5.00e+08
7.50e+08
1.00e+09
1.25e+09

Time (s)

tr
an

sf
er

re
d

by
te

s
(b

yt
es

/s
)

src MPI (only one host) Router (eno2) Tcpkali

(b) Network traffic monitored with nonblocking broadcast with 50 subdivisions.

Figure 5.6.: Paravance. Network traffic monitored on one MPI host, and on tcpkali server’s
host for nonblocking broadcast. The upper figure plots one instance for each
interference pattern without subdivision, whereas the lower figure plots it with
50 subdivisions.

5.5 Results and Data Analysis of the Real Executions 75

5.5.2 Results Analysis for Grisou

Broadcast Subdivision Interference Mean runtime(s) Standard dev Increase %

Blocking

No subdivision

No interference 452.28 0.99
15s interference / 45s idle 583.11 0.49 28.93
15s interference / 15s idle 806.33 1.72 78.28
30s interference / 30s idle 820.04 2.23 81.31
45s interference / 15s idle 1243.07 18.45 174.85

Constant interference Reached Timeout

50 subdivision

No interference 349.30 0.86
15s interference / 45s idle 442.71 1.00 26.74
15s interference / 15s idle 568.50 0.60 62.76
30s interference / 30s idle 574.34 1.19 64.43
45s interference / 15s idle 796.79 3.76 128.11

Constant interference 1415.59 28.52 305.27

Non blocking

No subdivision

No interference 372.83 2.34
15s interference / 45s idle 475.88 4.67 27.64
15s interference / 15s idle 624.58 1.96 67.52
30s interference / 30s idle 599.13 1.97 60.70
45s interference / 15s idle 860.33 25.32 130.75

Constant interference 1490.47 21.72 299.77

50 subdivision

No interference 379.14 1.29
15s interference / 45s idle 469.59 0.92 23.86
15s interference / 15s idle 599.06 0.59 58.01
30s interference / 30s idle 595.54 0.35 57.08
45s interference / 15s idle 832.91 1.80 119.69

Constant interference 1455.86 17.55 284.00

Table 5.2. Mean runtime of all PDGEMM executions for each configurations (number of
subdivisions, interference patterns and broadcast types) on Grisou. The last
column is the percentage of increase compared to the execution of the same
category without interference.

The experiment on Grisou shows the same behavior as the experiment on Par-
avance. However, in Grisou the PDGEMM application is more impacted by the
interferences.

Table 5.1 presents the mean runtime for each configurations on Grisou (along with
the standard deviation). As for the experiment on Paravance, the table shows that
the application execution is slowed when there is interferences. The major difference
is that the application is slowed at maximum by 305 % with Blocking broadcasts and
50 subdivisions (all instance of the blocking configurations with no subdivisions have
been killed because they reached the timeout, so the maximum is probably more),
and the minimum is 283 % for non-blocking broadcasts with 50 subdivisions.

5.5.3 Difference Between Grisou and Paravance

Figure 5.7 shows the monitoring traces of Grisou and Paravance side by side for three
configurations. Looking at the configuration without interferences (upper plots),
we notice that both executions are similar: The execution took in average 349.30 s
(table 5.2) on Grisou and 346.08 s (table 5.1) on Paravance. It also appears that the
network activity generated by MPI is similar.

76 Chapter 5 Ptask Model Validation

The main difference can be observed when looking at the phase with interferences.
The lower plots show the monitoring traces with the configuration doing constant
interferences. The green line depicts the Tcpkali network activity, while the (dark-
)purple shows the MPI activity. In Paravance, the PDGEMM application is less
impacted by the interferences on Grisou, up to 16 % for Paravance against 300 %
on Grisou. During interferences phases the MPI application doesn’t use the same
bandwidth on Grisou and Paravance: Tcpkali manages to get more bandwidth on
Grisou. This can explain why the application on Paravance is less sensitive to network
interferences generated with Tcpkali.

Paravance and Grisou are similar clusters, they both features Dell PowerEdge R630
with two Intel Xeon E5-2630 v3 (Haswell, 2.40GHz, 8 cores) per nodes. The main
difference is the network switch connecting the nodes of each cluster, the Paravance
nodes are connected with a Cisco Nexus 9508 and the Grisou nodes are connected
with a Nexus 56128P. Both switch might have a different behavior or they might
have different configurations.

5.5 Results and Data Analysis of the Real Executions 77

Grisou Paravance

N
o interference

30s interference / 30s idle
C

onstant interference

0 500 1000 1500 0 500 1000 1500

0.00e+00

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

0.00e+00

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

0.00e+00

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

Time (s)

tr
an

sf
er

re
d

by
te

s
(b

yt
es

/s
)

src MPI (only one host) Router (eno1) Tcpkali

Figure 5.7.: Comparison of monitoring traces of Grisou and Paravance. The plots show
the configuration of PDGEMM with blocking broadcasts and 50 subdivisions. It
appears that without interferences, Paravance and Grisou have similar execu-
tions, the network activities are alike and have the same execution times. How-
ever, under constant interferences (bottom line), the bandwidth of PDGEMM is
significantly lower on Paravance than on Grisou and have a different execution
time.

78 Chapter 5 Ptask Model Validation

5.6 PDGEMM in Simulation

The second part of the experiment consists of creating a ptask corresponding to
PDGEMM. To evaluate the model’s capacity to predict the application running time
under interferences the ptask is executed in the same simulated conditions: the same
platform and the same controlled network interferences. That is to say, we need to
create the SimGrid platform corresponding to the setup depicted in figure 5.2b, to
simulate the same interferences, and a ptask representation of PDGEMM.

5.6.1 SimGrid Platform, Calibration and Interference

The created platform uses the SimGrid xml API. The platform needs several attributes,
the hosts performing the calculation, and how they are connected (SimGrid is
detailed in section 4.2.1). In the simulation, we create the platform depicted in 5.2b,
which consists of two distinct homogeneous clusters connected to two switches (one
per cluster) and one link connecting the two clusters (our routing node).

One important part of SimGrid simulations is the platform calibration, the speeds
of the hosts and links need to be carefully studied to create a SimGrid platform
accurately representing the reality. To calibrate the network links, we use the
SimGrid default TCP policy, which has already been evaluated several times[Vel+13;
Béd+13]. However, to accurately represent the computation speed of the hosts
we use the calibration made by Tom Cornebize to accurately predict HPL running
time at large scale [CLH19]. This is possible because, both the application HPL and
PDGEMM use the Dgemm function from the openblas3 library. The Dgemm function
perform the following operation:

C := α ∗A ∗B + β ∗ C

For matrices C, A and B, and the two scalars α and β. Dgemm is the function used
to do the matrix product in the actual implementation of algorithm 3.

The whole experiment is created with a unique SimGrid program, that both execute
a ptask and generates the same interference used in the real platform. To simulate
the interferences we use two methods, the first method is to create a ptask with no
computation that will transfer data between one node of the first group and another
node in the second group. The second method is to use the SimGrid API: s4u enables
to program actors to take part in the simulation. To mimic the behavior of Tcpkali,
we create two SimGrid actors that will periodically initiate data transfer to match
with the different configurations used in the real platform.

3https://www.op10nblas.net/

5.6 PDGEMM in Simulation 79

https://www.op10nblas.net/

5.6.2 Ptask Generation

One difficulty of the ptask model is to be able to generate a ptask corresponding
to the real application. As a reminder, to compute a ptask SimGrid needs two
information: the communication matrix and a vector of computation amount to
complete.

The number of elements in the vector of computation corresponds to the number of
SimGrid actors in the simulation. In our case, we use one actor per MPI rank. The
computation amount, in the case of PDGEMM, is easy to obtain as we consider that
one matrix product generates approximatively m ∗ n ∗ k number of operation, for
matrix Um,k and matrix Vk,n, m, n, and k are the dimension of the matrices U and V ,
the first letter being the number of lines, and the second the number of columns. On
each MPI rank, we have one matrix block of size n∗n (with in our case n = 8∗104 as
described in 5.4.2). Thus each rank has locally a block of size b ∗ b with b = n/

√
(P)

(P is the number of ranks). Thus each rank will execute b3 operations
√

(P) times
(loop at line 10 of algorithm 3).

The second parameter is the number of block subdivisions, in our experiment we
use a subdivision of 50 sub-block. However, the total amount of computation made
by each rank is not impacted by the number of divisions of the blocks. The number
of iteration is consequently increased.

Obtaining the communication matrix of the application is more tedious for two main
reasons. The first reason is that the exact communication depends on the underlying
broadcast algorithm used during the application. The second reason is that we
lack monitoring tools permitting us to know the point to point communication
destinations. MojitO/S only provides the data that a node receives and sends. To
cope with this issue, as in section 4.3.2, we use SMPI with the tracing options
enabled in order to get the point-to-point communication. This enables to compute
the exact communication matrix. Next, we force the broadcast algorithm to the
binary tree algorithm in simulation, and in reality, both MPI and SMPI enable to tune
this parameter at execution time.

It is worth mentioning that the ptask model has not the possibility to model the
different parameters of PDGEMM. Thus, the different combinations of PDGEMM,
number of subdivisions, and broadcast types are represented with the same ptasks.
The only parameters impacting the ptask generation are the number of processes
used and the size of the input matrices.

80 Chapter 5 Ptask Model Validation

Ptask Interference runtime increase %

Tcpkali is s4u::Actor

No interference 312.00
15s interference / 45s idle 382.00 22.44
15s interference / 15s idle 472.00 51.28
30s interference / 30s idle 472.00 51.28
45s interference / 15s idle 635.00 103.53

Constant interference 935.00 199.68

Tcpkali is ptask

No interference 312.00
15s interference / 45s idle 382.00 22.44
15s interference / 15s idle 472.00 51.28
30s interference / 30s idle 472.00 51.28
45s interference / 15s idle 635.00 103.53

Constant interference 935.00 199.68

Table 5.3. Predicted runtime for the ptask model under each interference pattern, and two
methods for simulating tcpkali. The obtained results are identical for the two
methods: Using a ptask or the SimGrid’s s4u API doesn’t impact the simulation’s
results. The last column is the percentage of increase compared to the execution
of the same category without interference.

5.7 Comparison between the Ptask Model and
Reality

In this section, we compare the results obtained with the ptask model in simulation
to the real execution of PDGEMM. Table 5.3 shows the prediction obtained with
the ptask model. The first thing to notice is that without interference the model
predicts a runtime of 312 seconds, as a reminder the mean runtime of PDGEMM
application’ execution without interference was, for 50 subdivisions, 346 s (error of
10 %) for blocking broadcasts, and 373 s (error of 18 %) for nonblocking broadcasts
on Paravance. On Grisou the mean runtime is 349 s and 379 s respectively.

Figure 5.8 compares the ptask prediction with the executions on Paravance and
Grisou. As already stated, the runtime prediction without interferences remains
close, however, ptask fails to accurately predict the runtime with interferences. The
predictions are less accurate when the number of interferences increases, to the final
point with constant interferences. However, it appears that the model is a better fit
for Grisou than Paravance. For PDGEMM, the running time is increased at max 16 %
for Paravance, and 300 % for Grisou. The ptask model predicted time increases to
199.68 %.

We observe that the ptask model reacts to interferences in the same way as PDGEMM
does, the application execution is slowed during interference phases, and longer
interference time (in totality) means slower executions, therefore 10s interference /
10s idle and 30s interference / 30s idle have the same running time for ptask.

5.7 Comparison between the Ptask Model and Reality 81

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Blocking broadcast Nonblocking broadcast

runtim
e

%
 of increase

N
o

in
te

rf
er

en
ce

15
s

in
te

rf
er

en
ce

 /
45

s
id

le

30
s

in
te

rf
er

en
ce

 /
30

s
id

le

45
s

in
te

rf
er

en
ce

 /
15

s
id

le

C
on

st
an

t i
nt

er
fe

re
nc

e

N
o

in
te

rf
er

en
ce

15
s

in
te

rf
er

en
ce

 /
45

s
id

le

30
s

in
te

rf
er

en
ce

 /
30

s
id

le

45
s

in
te

rf
er

en
ce

 /
15

s
id

le

C
on

st
an

t i
nt

er
fe

re
nc

e

0

500

1000

1500

0

100

200

300

interference

V
al

ue

Source ●● ●● ●●Grisou Paravance Ptask Kind ●● Ptask Real

Figure 5.8.: Comparison of the ptask with Paravance and Grisou for configurations
with 50 subdivisions. The error bar are only present for Paravance and Grisou,
they show the confidence intervals (95 %) of the mean runtime. The 15s
interference / 15s idle pattern has been removed to increase readability.

82 Chapter 5 Ptask Model Validation

5.8 Interference Analysis

The current experiment’s results show that the ptask model keeps the tendencies of
PDGEMM while failing to accurately predict the running time with interferences.
More specifically, the ptask model tends to either under predict the runtime for
Grisou, or over predict the runtime for Paravance. However, the ptask seems to
adopt the same behavior as the PDGEMM application when we simulate a ptask with
interferences.

Grisou − Blocking broadcast Grisou − Nonblocking broadcast

Ptask (tcpkali is ptask) Ptask (tcpkali is s4u::actor)

Paravance − Blocking broadcast Paravance − Nonblocking broadcast

0 500 1000 1500 0 500 1000 1500

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

Time (s)

A
pp

lic
at

io
n

pr
og

re
ss

 (
%

)

Interference
No interference
15s interference / 45s idle
15s interference / 15s idle

30s interference / 30s idle
45s interference / 15s idle
Constant interference

Figure 5.9.: Progress of PDGEMM and ptask over the simulated time until its completion
(progress = 100).

Figure 5.9 depicts the progression through time of PDGEMM and ptasks. For
PDGEMM, the progress lines are obtained by logging during PDGEMM execution the
time at which the application enters a loop and the loop’s index for each process.
The provided information is aggregated, and the percentage corresponds to the
current number of loop done divided by the total of loops required. For ptask, the
progression lines are obtained by periodically logging during the simulation the
remaining of work to perform before the ptask’s completion. This figure gives a
vision of the impact of the interference on the progress of PDGEMM and ptasks.
We can note behaviors of PDGEMM common to Grisou, Paravance, and the ptask
model:

5.8 Interference Analysis 83

1. The application has two progress rates: The progress rates during interference
phases, and the progress rate corresponding to the phases without interfer-
ences. This phenomenon is more visible, for instance, on Grisou, and for the
ptask model.

2. The two progress rates remain identical regardless of the time of the interfer-
ence made. This suggests that PDGEMM is sensitive to the total quantity of
interference (in time) independently of when the interferences occur. This is il-
lustrated with the configurations 15s interference / 15s idle and 30s interference
/ 30s idle that have a close running times (table 5.1 and table 5.2).

From the different observations of the experiments, we deduce a theoretical interme-
diate model to predict the runtime of both the ptasks and the PDGEMM application
with the different interference patterns.

5.8.1 Theoretical Interference Model

The model works as follows. For a time period T (in our experiments T = 60 s) the
application progress for this time period can be calculated by the formula:

T (α ∗ c1 + (1− α) ∗ c2) (5.1)

The parameters c1 and c2 correspond to the progress rate of the application during
the different phases: c1 corresponds to the progress rate with interferences (the slow
rate) and c2 correspond to the progress rate without interference (the fast rate). The
parameter α corresponds to the percentage of the time period with interferences
(the slow rate) and 1− α corresponds to the percentage of the time period (T) that
doesn’t have interference (the fast rate).

The model predictions can be computed with the procedure 4. The procedures
compute the different periods until the application completes (i.e., the remaining
variable reaches 1). During a period, the procedure first computes the progress for
the slow rate and the progress of the fast rate (the same order as in the experiments).
In case of the application remaining exceeds the completion value (line 7 and line
11), the procedure rollbacks the predicted times. The procedure returns the predicted
time.

5.8.2 Theoretical Model Calibration and Results

To use the model on the different experiment one need to find the proper values of
T , c1, c2 and α . From the experiment configurations used, the time period T equals
to 60 s, and α depends on the interference pattern. Table 5.10a shows the calibrated
values for α.

84 Chapter 5 Ptask Model Validation

Algorithm 4 Theoretical model prediction procedure
1: procedure PREDICT(α, c1, c2, T)
2: remaining ← 0 . Completed when remaining is at 1
3: time← 0 . Initializes the prediction to 0
4: while remaining < 1 do
5: remaining ← remaining + T ∗ α ∗ c1 . Updates progress of slow rate
6: time← time+ T ∗ α . Increases time
7: if remaining > 1 then . Rollbacks if progress exceed 1
8: time← time− (remaining − 1)÷ c1
9: Break . Exits while loop

10: end if
11: remaining ← remaining + T ∗ (1− α) ∗ c2 . Updates progress of fast rate
12: time← time+ T ∗ (1− α) . Increases time
13: if remaining > 1 then
14: time← time− (remaining − 1)÷ c2
15: end if
16: end while
17: Return time
18: end procedure

The values for c1 and c2 are directly calculated from the experiment results. The
slow rate c1 corresponds to the slope of the progress line of PDGEMM with constant
interferences, while the value for the fast rate (c2) corresponds to the slope of the
progress line without interferences. The easiest way to take these values is to use
the values of the run with constant interferences and without interference. For
the Paravance and Grisou clusters, we take the mean runtime of the corresponding
configuration, for the ptask we have only one value so we directly take the prediction.
For more readability, we choose one configuration for the real executions, the
configuration with Nonblocking broadcasts, and 50 subdivisions. The obtained
progress rates are presented in table 5.10b.

Interference pattern α

No interference 0

15s interference / 45s idle 0.25

30s interference / 30s idle 0.5

45s interference / 15s idle 0.75

Constant interference 1

(a) Values for α corresponding to the different in-
terference pattern used in the experiments.

Experiment c1 c2

Grisou 1÷ 1455.86 1÷ 379.14

Paravance 1÷ 430.49 1÷ 374.29

Ptask 1÷ 935.00 1÷ 312.00

(b) Values of c1 and c2 calculated from the exper-
iment’s result (Grisou, Paravance and ptask).

Figure 5.10.: Model parameters.

Figure 5.11 shows the obtained results for each different calibration. We observe
that with the proper calibration of the theoretical model is able to predict, for
each interference pattern, the runtime of both Grisou and Paravance, and for the

5.8 Interference Analysis 85

Ptask. This result suggests that the ptask has the potential to accurately simulate
PDGEMM application provided that one modifies or calibrates the model to increase
its accuracy.

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

Paravance Ptask Grisou

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0

500

1000

1500

α

ru
nt

im
e

source ● Theoretical Real Ptask

Figure 5.11.: Theoretical model’s results for the different calibrations. The x-axis shows the
different values of α, corresponding to the different interference patterns.

5.9 Discussion

In Figure 5.5a, we observe that PDGEMM alternates between phases in which
the network is used (around 27s) and phases in which it is not used (around 5s).
However, the ptask aggregates the whole network activity into homogeneous network
activity.

In the case of periodic network activity or bursty network activity, the ptask loses
information about these behaviors. Figure 5.12 illustrates this effect: the ptask
loses the periodic effects of the real activity, and the network is always solicited but
with a lower intensity. The ptask model is not able to simulate this effect with only
one ptask, and therefore, in this case, the ptask might fail to soundly simulate the
interferences. For instance, if another application uses the network (only) during the
computation phases, the observed application should not be impacted. In contrast,
if the application has only one network burst during its execution, the ptask might
generate a low network activity that doesn’t represent the burst.

86 Chapter 5 Ptask Model Validation

Time

Network activity

Figure 5.12.: Illustration of how the ptask simulates a periodic application. The dotted blue
line represent an example of a real activity. The solid purple line shows the
activity of ptask’s simulating the blue line.

One solution is to use different ptasks to simulate a single application, each ptask
simulates different phases. For instance, for a periodic application, one can alternate
between a ptask for the communications and a ptask for the computations.

A typical scheduling simulation features a lot of (different) jobs. Jobs that last days
can be simulated along with jobs that only last hours or a few minutes. In this context,
for one application alternating between phases of 27 seconds of communications
and 5 seconds of computations during one day, it would require more than two
thousand of ptask executions. The same reasoning applies to short applications: An
application of ten minutes alternating between two phases of 1 second requires 600
ptasks.

Although this solution of using several ptasks to simulate the temporality of an appli-
cation is interesting, it raises a more fundamental important question: What tempo-
rality one has to consider to create application models suitable for scheduling
simulations? In other words, what is the time scale that we need to consider for
creating application models?

• A small time scale increases the level of details of the simulation and potentially
the total time of the simulation. It simulates short jobs with several ptasks
extending the number of ptasks required for very long jobs.

• A large time scale exacerbates the smoothing effect and decreases the level
details of the simulation. It simulates both small and long jobs with a single
ptask.

Finding the proper time scale should be a trade-off between the level of details
required for the study, and the simulation time. Another possible solution is to run
preliminary simulations with a large time scale to detect situations that are worth to
study with a small time scale.

5.9 Discussion 87

5.10 Conclusion

The chapter evaluates the ptask model by comparing it to a real MPI application
(PDGEMM) under different network interference patterns. The experimental setup
benefits from the Grid’5000 infrastructure to execute a real application and to create
controlled network interference with a real HPC cluster — on a TCP network. The
evaluation uses two different clusters: Paravance and Grisou.

5.10.1 Ptask calibration

The results obtained show that the ptask model provides acceptable predictions
for PDGEMM applications when there are no network interferences (error around
10 %), however, the accuracy of the model decreases as the quantity of interferences
increases.

Despite the accuracy issue under interferences, we show that the ptask has the
potential to soundly simulate PDGEMM application. Indeed, the ptask model shows
the same behavior under interferences, both PDGEMM, and the ptask has two modes:
a slow mode during interferences, and a fast mode when there are no interferences.
This behavior has been verified with a theoretical interference model that accurately
predicts the running time of the ptask model and the PDGEMM application, provided
that the theoretical model is calibrated. This suggests that the ptask model can
accurately predict the running time of PDGEMM with proper calibration.

Calibrating the ptask model is not yet possible as it doesn’t currently expose pa-
rameters to be calibrated. Modifying the model might be necessary to incorporate
different parameters for the calibration. First, one needs to identify the parts of the
model that need to be calibrated. The ptask model is implemented into the simulator
SimGrid, which is a complex piece of software. Identifying the part of the model
that needs calibration is not immediate and requires further investigations.

SimGrid tracing is equivalent to monitoring in reality but in the simulation. With
this feature, it is possible to trace the activity of ptask during the simulation: The
quantity and time of the bandwidth used on the different links or the computation
activity of the hosts, etc. Using tracing is a good way to compare the real network
activity with the network activity in simulation, and to identify differences that could
lead to a calibration point. However, the tracing of SimGrid is currently broken4: a
first step toward ptask calibration is to fix the tracing.

4https://framagit.org/simgrid/simgrid/-/issues/40

88 Chapter 5 Ptask Model Validation

https://framagit.org/simgrid/simgrid/-/issues/40

5.10.2 Scheduling Simulations
As stated in the previous chapter, the ptask has reasonable simulation time for
scheduling simulation, while being able to simulate the resource consumption of an
application. The results obtained in this chapter show that the ptask model has the
potential to simulate an HPC application with interferences. Particularly, the model
has been evaluated for an application with a homogeneous activity for the network
and the computation, for which the ptask is well suited.

Nevertheless, our final objective is to create a model of application suitable for
the simulation of next generation platforms and applications. Currently, the ptask
has been tested only for one application with synthetic interferences. Further
investigations are necessary to understand the capability of the model. For instance,
what is the accuracy of the ptask in a scenario where the interferences are replaced
by another application?

Additionally, if PDGEMM is a real application, it is not a production application
and it has been developed for this evaluation. Comparing the ptask model to real
production applications is needed to increase our confidence in the model. Real
HPC application can be complex and requires experts to understand their resources
consumption. However, leveraging monitoring techniques used in this chapter one
can pinpoint phases in the application that show homogeneous patterns. Identifying
these phases is the entry point to simulate complex production applications.

5.10 Conclusion 89

6Study RJMS with the Emulation
Approach

6.1 Introduction
There are two families of methods to study a distributed application: the ones that
work on the implementation of the target application, and the ones that work on a
model of the target application (using simulation). Resource and Job Management
Systems (RJMS) are distributed software in charge to manage the job and the
resources of a computing platform. In chapter 3 we evaluate a new scheduling policy
in simulation, and in chapters 4 and 5 we propose to extend scheduling simulations
with a dedicated model for the simulated jobs. In this chapter, we are interested in
techniques and methodologies that enable to study real RJMS, instead of using a
model of it.

RJMSs are complex and configurable software, the scheduling policy of real RJMSs
often incorporates a large part of real cluster constraints, such as different queues
depending on the project to handle different priorities, or to configure the queue
of the backfilling, etc. One common methodology to study RJMS is to rely on
Simulation. Simulation, by essence, uses a model of the targeted systems. Creating
a model able to capture the whole complexity of a system is a complicated issue,
and needs to be validated (or invalidated) before using it (chapters 4 and 5).
Furthermore, RJMSs are subject to evolutions, and therefore one RJMS model needs
to be updated (and validated) with the evolution of the RJMS. These aforementioned
approaches use a model of an RJMS, and therefore these studies do not directly
target a specific RJMS implementation.

Some scenarios impose to use a specific RJMS implementation. For instance, exper-
imenting with real RJMS is a good option to conduct preliminary experiments, to
help system administrators to tune the RJMS configuration for their cluster. Or to
enable developers to test new features during the development phase.

As detailed in chapter 2, the methodologies used to experiment with real RJMS
either rely on emulation or in-vivo. in-vivo consists of executing a real RJMS on
a real platform. in-vivo is close to a production system, but this approach can be
time-consuming, complex, and difficult to reproduce. In-vivo experiments also have
the drawback of being limited to the platforms at hand. Emulation, on the other
hand, consists of studying a real RJMS on a platform model. This approach is a good
alternative to in-vivo, as it enables to study an RJMS in a controlled environment

91

and permits the study of what-if scenarios, such as « What if my platform has more
computing nodes? » or « What if my platform has a smaller network? ».

State of the art emulation techniques (detailed in chapter 2) mostly relies on con-
tainers and virtual machines to set up a platform during the experiments. This
methodology is useful to create larger platforms than the platforms at-hand. How-
ever, we refer to this approach as hybridization because the platform is partially
modeled: the physical resources are virtual, and enable to execute a real operating
system (such as Linux). One drawback of the virtualization (or using containers)
is that the modeled platform is limited to the capacity and the architecture of the
platform at hand. Distem [Sar+13] enables a different platform on top of a real
platform, with the limitation that the modeled platform is less performant than the
real platform.

These tools and methodologies are a good start to study RJMS in a controlled
environment, and study scenarios involving platforms that are not available to
experimenters: larger platform using a large number of containers on a single node,
or platform with degraded network performances for instance with Distem. However,
even if it enables to broaden the scope of study than one can do with RJMS, these
methodologies still require a computing platform to carry them.

The Slurm simulator [Luc11; Rod+17; JDC18] and the Flux simulator [Pol+18] on
the other hand, enables to study and execute a complete RJMS on a single computer.
This feature is convenient for testing new innovations or evaluate new scheduling
algorithms. However, the Slurm simulator is tightly coupled to its implementation
(and to a particular Slurm version), at each new version of Slurm the simulator
needs to be updated and evaluated. Additionally, the simulator implementations are
dependant on a particular RJMS. Reproducing the approach for other RJMSs needs
to deal which each RJMS’s idiosyncrasy (programming language, architecture, etc).
For the Slurm simulator, and the Flux simulator the description of the simulated
platform is limited and is not able to simulate a realistic platform with different
network topologies for instance.

Current approaches designed to experiment with real RJMS, are limited either in the
number of scenarios one can study, or because they are tightly coupled to a particular
RJMS implementation, or worse a particular RJMS version. Our motivation is to
propose new tools and methodologies to experiment with RJMS that, first don’t
depend on a particular RJMS implementation, and second that can bring the full
potential of a platform simulator such as SimGrid or Batsim.

The contribution of this chapter is the presentation of two new approaches to execute
a real RJMS on a simulated platform, both enable to execute an RJMS on a single
computer. The two approaches are based on a (different) mechanism that enables
to use of a platform simulator, the former uses SimGrid while the later uses Batsim.

92 Chapter 6 Study RJMS with the Emulation Approach

This chapter details the presented approaches from a high-level point of view and
doesn’t detail the different tools and pieces of software used to carry out Simunix and
Batsky. This separation enables us to focus on the approaches and their utility, and
facilitate their comparison. The focus of the chapter 7, on the other hand, fills the
gap and details the different tools and software used and developed to implement
these approaches.

6.2 The Simunix Approach
Simunix initial objective is to execute, on a single computer, the RJMS Slurm on a
simulated platform. The simulated platform is managed by the simulation toolkit
SimGrid. Despite the main objective of Simunix which is to emulate Slurm, the
approach doesn’t depend on the Slurm source code. Simunix can be seen as a
sandbox which executes a program, and changes (some of) the functions called by
the program to modify or replace their original behavior. In other words, Simunix is
able to change the function called by a program to replace them with a simulated
version of the function. Simunix is not coupled with Slurm (or another RJMS)
because the replaced functions are from the C library (libc), which makes this
approach usable with all programs that rely on the libc.

An RJMS is by essence a distributed software that runs programs (daemons) on
the computing nodes of a cluster and uses a program on another node to manage
the cluster. To execute an RJMS on a single computer, Simunix creates a SimGrid
platform that simulates a cluster and executes all the RJMS program on a sandbox.
The programs are executed on isolated sandboxes and only a subset of the libc
functions are intercepted. This subset comprises all the communication functions
(the BSD socket API), all the process management functions (such as fork, or thread),
and the functions to manage and request the time.

SimGrid features a programming interface to create actors that interact with the
simulated platform. This model enables Simunix to simulate the program running in
the sandbox with actors; an actor is executing on a simulated node of the SimGrid
platform. Simunix project implements the libc functions with the Remote SimGrid
API, which creates a wrapper around SimGrid to isolate the different actors of the
simulation into a single process. With Simunix an actor can either be a process
(in case of a fork) or a thread. For instance, when the process calls the function
gettimeofday, Simunix intercepts this call and use the actor corresponding to the
current process to get the simulation time from SimGrid. The RSG API enables actors
to communicates with each other. The RSG’s actor model is detailed in section 7.3.
Figure 6.1 illustrates how Simunix works for a single execution with two different
processes from a high-level perspective.

6.2 The Simunix Approach 93

Operating System
(or kernel)

Simunix sandbox

Program

Simunix sandbox

Program

SimGrid

Figure 6.1.: High-level illustration of a Simunix simulation involving two programs. The
execution of the two programs are on the same computer, and therefore the
SimGrid execution and the two programs share the same operating system.
Each process is executed into a different sandbox, and the black arrows depict
the function replacing the original libc function and interacting with SimGrid.
The sandbox is permeable: the function that is not intercepted by the sandbox
are executed normally by the OS, on the other hand, the intercepted functions
use the SimGrid simulation. Note that to provide process isolation for each
separated actors, the sandbox accesses the SimGrid simulation using the RSG
project.

6.2.1 Project Historic
Simunix’s first idea has been originally created by David GLESSER with SimGrid,
which developed the first Simunix version. The first version presented several
limitations: the global variables were shared among the different processes breaking
the consistency of each individual process. To code this architectural issue, the
second version uses RSG. The development of the second version is a contribution
of this dissertation [Gle16; GF15]. The original version of RSG has also been
developed, and many features have been incorporated into the project to support
the development of Simunix.

The second Simunix version uses the ELF poisoning (detailed in section 7.2) approach
to intercept the relevant functions of the libc. The first proof of concept was able to
simulate a cluster up to 10 nodes [GF15], and worked on different Slurm version
without requiring any modifications. Unfortunately, recent changes in the libc made
the use of ELF poisoning failing to intercept the fork function. The issue comes from
changes in the libc impacting the ELF structure to the point where the fork function
doesn’t appear in the ELF file. More investigations are necessary to pinpoint the
origin of this behavior.

Simunix project is not maintained anymore. However, the sgwrap project can be
seen as the third version of Simunix. It aims to generalize the Simunix approach
and extend the idea for other programs. sgwrap is similar to Simunix: It models

94 Chapter 6 Study RJMS with the Emulation Approach

the libc using the RSG project. The current implementation is at an early stage of
development and doesn’t support yet the execution of Slurm.

The tools and mechanisms used to build the different versions of Simunix are
explained in section chapter 7.

• The first tool is the interception mechanism that enables to replace the function
called by the program and therefore creates the sandbox.

• The second tool is called Remote SimGrid, it creates a wrapper around SimGrid
to isolate the different program of Slurm to system processes (which is not
possible with SimGrid only).

• Finally, sgwrap models the functions of the libc using the RSG API. Although
sgwrap is more recent than Simunix, both sgwrap and Simunix use RSG to
model the libc. Therefore the libc modelization stands for both projects.

6.2.2 Simunix Use Case: Slurm Emulation

The initial objective of Simunix is to be able to execute the Slurm RJMS on a single
computer, using the SimGrid simulation toolkit. A typical Slurm installation features
a Slurm controller (SlurmCtld) and Slurm daemon (SlurmD) per node. The SlurmCtld
is responsible for the scheduling and handling the job submissions. The SlurmD
are responsible for the node it is running to, including the management of the job’s
execution. The controller controls the SlurmD processes with a remote procedure
call protocol. To submit a new job to the Slurm installation, the srun program can be
used.

The figure 6.2 depicts how to execute Slurm with Simunix on a simulated platform.
The different programs necessary for the Slurm execution are executed on their
dedicated sandboxes. As explained in the previous section, each sandbox handles
the set of actors necessary for the execution of the program. An actor can be either
a process or a thread. Slurm uses the libc socket API to communicate between
the different processes of the installation. The functions are intercepted (with the
sandbox) to use the SimGrid simulation instead.

As explain in chapter 1, to experiment with RJMS, on common input is the workload.
The workload is the list of jobs that needs to be scheduled during the experiment.
To inject the different jobs, during the execution of Slurm with Simunix, another
program is executing in Simunix. Its sole objective is to execute the srun program
(inside a sandbox) to submit new jobs.

The jobs of the experiment are a simple call program calling the system call sleep.
When the SlurmD daemons execute jobs, it uses the fork function to create a new

6.2 The Simunix Approach 95

process. Simunix intercept the call to the fork, and create a dedicated actor for the
jobs, therefore the sleep function called is also intercepted.

Operating System
(or kernel)

Simunix sandbox

SlurmCtld

SimGrid Simulation

Simunix sandbox

SlurmD

Simunix sandbox

SlurmD...

Simulated
host

Simulated
host

Simulated
host

...

Figure 6.2.: Example of usage of Simunix with Slurm.

6.3 Batsky
Batsky is an approach to plug a real RJMS on a simulator such as Batsim. Batsky
leverages the fact that RJMSs, at some point, need to launch an external job — a
user’s program. Using a special job, Batsky can inject a program to take the control
from the RJMS and gather information about the RJMS decisions. The current state
of the project is a proof a concept that aims at executing Slurm.

The main principle is based on two main components:

• A simulation controller, that handles the time of the simulation, the job execu-
tions, and the job submissions. All requests concerning the time emitted by
the RJMS are intercepted and transmitted to the controller. These requests
involve, among other, the call to functions such as sleep or gettimeofday.

• The second component is BatJob: A program that is started when the RJMS
launches a job. BatJob connects to the simulation controller and sends infor-
mation about its allocation. The controller notifies the BatJob when it shall
exit.

With this design, Batsky is able to launch the RJMS in a controlled environment,
controlling the time and jobs. Batsky aims at using Batsim as a simulation controller,
giving a way to plug any RJMS on the Batsim project to benefits form the job
models(chapters 4 and 5). Figure 6.3 depicts an overview of Batsky.

Batsky works with an RJMS setup, in our case we target the RJMS Slurm. More
details about Slurm is provided in previous section (6.2.2). Batsky starts a Slurm

96 Chapter 6 Study RJMS with the Emulation Approach

Batsim protocol

SlurmD

Container pool

SlurmCtld

libc interception

gettimeofday()

gettimeofday() {

 batsky_adapter_get_simtime()

}

launch job

Batsim

Batsky-adapter

BatJob

Figure 6.3.: Batsky overview. The Batsky-Apdater is the bridge between the simulation and
the reality, it controls the time provided to SlurmCtld, and gathers information
from the BatJob. The white arrows represent network traffic between the
different components.

controller daemon (SlurmCtld) with a time interception mechanism. The intercep-
tion mechanism is based on linking a modified C library to the target application
(Slurm). Unlike Simunix, the network communications are not intercepted by Batsky,
hence the communications between SlurmCtld and the SlurmD daemons are not
simulated.

Figure 6.4 shows the sequence diagram of the execution of one job with Batsky (The
circled numbers identify a phase in the sequence diagram):

1. A Batsim simulation is executed. Batsim is in charge of providing the simula-
tion time, handling the workload, and the job executions 1 .

2. Batsky-Adatper is the scheduler of the Batsim simulation. Its role is to be
the intermediary between the Batsim simulation and the Slurm installation.
The adapter receives the job submission from Batsim, and create the adapted
Slurm request (using the srun utility) 2 . The intercepted time requests of
SlurmCtld are redirected to the adapter, which interacts with Batsim to provide
the current simulation time.

3. A Slurm installation. A SlurmCtld is executed with a time interception mech-
anism, at each time-related functions, SlurmCtld calls a modified time function.
A number of SlurmD are executed in different containers and are in charge of

6.3 Batsky 97

executing the BatJob on the containers. When SlurmCtld takes the decision
to launch a job (after a scheduling phase for instance), it notifies the SlurmD
in charge of the nodes allocated for the new jobs and sends the job execution
requests 3 .

4. BatJob. BatJob is the program executed for all the jobs of the simulation.
When SlurmD starts a job, it starts a BatJob and sets an environment variable
specifying the node allocated for this job 4 . BatJob sends the content of the
variable to Batsky-Adapter. When the job is terminated, Batsim notifies the
adapter, which in turn notifies the corresponding BatJob for its termination.

5. When the job finishes, in 6 , Batsim notifies the adapter the termination of
the job 1, which in turn notifies the corresponding BatJob 7 . Batjob naturally
exits when it receives the exit message from the adapter. Finally, SlurmD
notifies the SlurmCtld that the job is complete 8 .

Simulation Reality

Job 1 submitted

srun BatJob (id=1)

Scheduling

Start job 1

Launch job 1

Job 1 started on node 1
Start job 1
on node 1

Advance
simulation

Job 1 finished

Finish job 1

Job 1 finished

Batsim Batsky-Adapter

BatJob(id=1)

SlurmD (node 1) SlurmCtld

21

3

45

8

6
7

Figure 6.4.: Sequence diagram of the simulation of a job with Batsky and Slurm.

Time Synchronisation

The time interception enables to control the time of the simulation and therefore to
speed up the execution time.

The simulation time is lead by the events of the simulation. If the next event of the
simulation is in one hour, the simulation jumps directly to the next event, increasing
the simulation time by one hour. When Slurm polls the system time it is intercepted

98 Chapter 6 Study RJMS with the Emulation Approach

and Batsky sends the time of the simulation. Therefore, between two consecutive
Slurm’s calls to poll the system time, the simulation could have advanced of one
hour.

One challenge of Batsky is to keep the RJMS in a consistent environment regarding
the time of the simulation. For instance, at the beginning of the simulation, the
Slurm’s setup routine performs an initialization phase, in which the SlurmCtld
connects to every SlurmD daemons. These phases are often defined by a number of
communications that are not relevant to the simulation. For instance, when executing
or terminating a job, Slurm does numerous control checks with the daemons. If
during these phases, the simulation time jumps are too high, Slurm detects than an
issue.

In order to keep the simulation time consistent, Batsky defines a number of phases
where the time flows normally. During these phases, Batsky uses the real system
time — The calls to the time functions are still intercepted, but Batsky provides the
system time instead of the simulation time. From Batsky point of view, it is difficult
to detect when the real system time phases must end. Therefore, we use a fixed
amount of time during which Batsky the times flows normally.

Using the real time increases the simulation time because, during this period of time,
the time is not accelerated. Using a long time period for the slow phases increases
the simulation time but ensures the consistency of the system. On the other hand, a
short time period dedicated to these phases enables speeding up the simulation, at
the cost of risking to break the system consistency.

A calibration of Batsky is necessary to find the parameters giving the proper balance
between consistency and simulation time.

6.4 Discussion
Simunix and Batsky are two different approaches to emulate RJMS. Even if both
approaches take a similar methodology: modifying the behavior of a program
without requiring modification of its source code. Simunix takes a complete approach
and intercepts every class of functions necessary to have complete control over its
execution. Batsky on the other hand intercepts only the function related to time to
be able to control it, and therefore speed up the execution of the targeted RJMS.

Simunix’s approach strongly relies on the simulation capabilities of RSG. The second
version of Simunix enabled to emulate Slurm with few nodes. Furthermore, the
approach requires no modifications of the source code of the target program, as a
proof of concept three different versions of Slurm were simulated without modifi-
cations [GF15]. Recently, the sgwrap project takes a similar approach to reproduce
the concept of Simunix. Intercepting every function necessary to have complete

6.4 Discussion 99

control over the execution of a distributed program is complex. Any failure in
the implementation can lock the whole simulation, and render the whole project
unusable until a fix is provided.

On the other, Batsky leverages the fact that RJMSs, at some point, executes a
user-provided job, to inject a Batsky related job. This job enables Batsky to, first
get information about the scheduling decisions (such as the allocated node for a
job), and second get control over the RJMS execution. The approach seems to be
applicable for others RJMS, in [Lar20] a similar approach has been used for the
kubernetes [@kubernetes] scheduler.

Simunix global approach has the advantage to be extendable to other programs
(written in C, and using the libc). Additionally, Simunix relies on RSG which is a
more generic tool designed to be used on diverse distributed software. Batsky, takes
a hybrid approach and is tailored to be specifically used with RJMS. Batsky presents
a better compromise to study RJMS for two (connected) reasons: it brings a way to
plug a real RJMS on Batsim to benefits from the Batsim job models, and the approach
seems usable with other RJMSs. Indeed, although both RSG and Batsim are based
on SimGrid, the level of abstraction proposed by Batsim is more appropriate to
study RJMSs. Batsim’s ecosystem is dedicated to the study of RJMS, it provides tools
and practical features dedicated to RJMS study: it handles the workload (1.3), and
proposes evaluation tool such as evalys [@evalys].

6.5 Conclusion

Simulation is a good option to experiment with RJMS, the approach has been
widely used for scheduling algorithms. One of the major issues with simulation is
that the abstraction used to design the simulation doesn’t always incorporate all
the complexity of a real RJMS execution. Nevertheless, some scenarios require to
experiment with a real RJMS: testing, tuning the configurations.

A promising approach is to rely on simulation, which involves using a real RJMS
on a model (or an abstraction of the platform). Current emulation methodologies
strongly rely on containers or virtual machines to create a platform different from
the platform at hand. However, using containers or virtual machines has limitations:
the experiments are complex and often require a bootstrap platform with few nodes
to simulate an RJMS at scale.

In this chapter, we propose two approaches to emulate a real RJMS on a single
computer. Simunix and Batsky: Simunix aims at simulating a whole distributed
application on a single computer by controlling every function related to communi-
cations, processes, threads, and time. Batsky leverage the design of RJMS to take

100 Chapter 6 Study RJMS with the Emulation Approach

control over its execution. We believe that the two approaches are promising for the
following reasons:

• Both approaches rely on SimGrid which enables to simulate a large number of
different platforms with different network topologies for instance.

• Both approaches enable to study RJMS independently of a specific RJMS
implementation, or version.

Batsky seems to be a promising approach for simulating RJMS, besides the approach
has been shown useful for the scheduler of kubernetes. As future research, concerning
Batsky, we outline two directions. In the first place, a more complete use case is
necessary to understand the potential of Batsky— using Batsky on a larger workload
and with a larger platform. The second direction is to evaluate the accuracy of the
simulation, by comparing a Batsky execution to a real use case, or a real Slurm
installation (on Grid’5000 for instance).

In this chapter, the two approaches are presented from a high-level point of view,
to keep the description simple and encourage a better comparison between both
approaches. The implementation of the two approaches rely on technicals tools and
software that are presented in chapter 7.

6.5 Conclusion 101

7Tools for Emulation: Interception,
Remote SimGrid and sgwrap

7.1 Introduction
This chapter focuses on the technical tools supporting the projects Simunix and
Batsky presented in the previous chapter (chapter 6). All the tools and projects are
available online (appendix A.2).

The first presented tools are the different mechanisms used to create a sandbox to
change the behavior of a program without modifying its source code. Both Simunix
and Batsky use one of these mechanisms. To the best of our knowledge, three
different mechanisms exist and are detailed in this chapter.

The second tool is called RSG, which is a simulation toolbox build upon the SimGrid
simulation toolkit.

Finally, the third tool is a library named sgwrap that implements the function of the
libc using RSG. The section details the modelization of the libc function with the
simulation concepts provided by RSG. The two former tools are solely used for the
Simunix project.

7.2 Interception Methods
This section regroups the different mechanism existing that enable to change the
behavior of a function (or a set of functions) called by a program without changing
its source code.

LD_PRELOAD

LD_PRELOAD [Pul09] is an environment variable recognized by the loader that
enables to load a shared object in priority. The loaded objects (such as functions) will
override the original functions, that should have been loaded without LD_PRELOAD.
Once loaded, the program will call the function defined in the shared object pointed
by the LD_PRELOAD variable instead of the original one. To take advantage of this
feature, one needs to create a shared object with the implementation of the function
one wishes to intercept. This variable is usually used to override a function, for
profiling purposes for instance.

103

In the case of sgwrap, we use this variable to force the program to load function that,
have the same behavior of the original ones, but instead of using the libc, we use
RSG. Concretely, when a program calls the function, for instance, gettimeofday which
polls the system time, we replace this function with a similar name which calls the
simulation time instead (using RSG’s API for instance).

One disadvantage of this method is that all the original functions remain unreachable,
that is to say, inside the overridden function it is not possible to use the original
function without starting an infinite recursion loop. However, sgwrap needs to
use the real network to communicate with the SimGrid simulation, therefore it is
necessary to be able to access the original libc functions. To cope with this issue, we
need to set up two things:

• Because the original function’s names have been overridden, we need to be
able to access to the original function. We use the dlopen function that enables
to load, at execution time, a shared object to call its function.

• We use a global variable that enables to detect if a function is being intercepted
(and is waiting to return). In this case, the variable should be set to true to tell
sgwrap that it needs to call the real system function.

ELF hooking

The Executable and Linkable Format (ELF) is a common file standard use by the UNIX
family of OS. It is a format defining an executable file. The ELF hooking [@elfhook;
@LIEF] methods works by, at execution time, rewriting the binary file of the exe-
cutable to change some function of the executable with the function one wishes to
execute instead. As for the LD_PRELOAD mechanism, the user of this method needs
to provide a shared object file containing the functions to change — This is can be
done by writing a shared library for instance. However, it is not necessary that the
function to replace holds the same name as the replaced function (as it is the case
for LD_PRELOAD). This enables to directly call if needed, the original libc function
within the shared object containing the functions replacing the original.

This method is used in the second version of Simunix. The direct advantage of using
this method is that, unlike the LD_PRELOAD method, there is no risk of infinite
loop recursion. However, this approach is more complicated, as it directly relies on
manipulating the ELF file of the executable that is intercepted. If the ELF file doesn’t
respect some constraints, the method can fail to intercept some functions. The ELF
file generation depends on a lot of parameters, such as compilation flags. If an error
occurs (for instance, the wrong flag is set), it can be difficult to track.

104 Chapter 7 Tools for Emulation: Interception, Remote SimGrid and sgwrap

Libc linking

It consists to directly change the libc of the program by providing a custom libc with
the modifications necessary. The custom libc keeps the same structure apart from
the function that one wishes to change the implementation. In order to access to
the unwritten function, the libc provide for each function a similar function prefixed
with two underscores — sleep can also be called with __sleep.

This is the method used in the Batsky (6.3) project. The difficulty of this approach is
to be able to change the libc of a program without changing the libc of the whole
system. Indeed, the libc is generally installed on the system and dynamically linked
to the programs. The Batsky approach to change the libc of Slurm is to use the
package manager Nix, which enables to have different versions of the same package
(in our the libc) without side effect.

7.3 Remote SimGrid
Remote SimGrid (RSG) contribution is twofold:

• First, it defines a set of high-level simulation concepts that should ease the
modeling of most distributed applications.

• Second, it provides a toolbox implementing these concepts using a well-known
simulation framework: SimGrid [Cas+14].

RSG has been originally written by Martin QUINSON. To fully support Simunix,
many features of RSG has been developed during this work. The project has been
rewritten to increase its maintainability, the basic architecture of the last version has
been developed by Millian POQUET and Adrien FAURE.

This section is organized as follows. We first present the simulation concepts to
describe distributed applications. And we finally details explains how our prototypal
SimGrid-based toolbox called (RSG) works.

7.3.1 RSG Simulation Concepts
A simulation is composed of several actors that execute user-provided functions.
The actors have to explicitly use the provided API to express their computation,
communication, disk usage, and other activities, so that they get reflected within
the simulator. These activities take place on resources such as hosts, links and
storage units. The simulator predicts the time taken by each activity and orchestrates
the actors accordingly, waiting for the completion of these activities.

When communicating, data is not directly sent to other actors but posted to a
mailbox that serves as a rendez-vous point between communicating actors. Actors

7.3 Remote SimGrid 105

issue put requests in a mailbox, that are matched with complementary get requests.
The concept of mailboxes can be paralleled with many others. The phone number,
which allows the caller to find the receiver. In TCP, the pair (hostname, host port) to
which you can connect to find your peer. Finally, in HTTP, URLs through which the
clients can connect to the servers. One big difference with most of these systems is
that no actor is the exclusive owner of a mailbox, neither in sending nor in receiving.
Many actors can send it into and receive from the same mailbox. TCP socket ports
for example are shared on the sender side but usually exclusive on the receiver side
(only one process can receive from a given socket at a given point of time).

Distributed applications are composed of multiple processes that can be distributed
over several machines while SimGrid is implemented as a single, centralized process.
This makes it impossible to directly use SimGrid to study the independent processes
of a distributed application. Remote SimGrid (RSG) is a technical solution designed
to allow the study of actual distributed applications with SimGrid. RSG is free
(licensed under GNU AGPL-3.0) and available online [@rsg].

Figure 7.1 illustrates the core architecture of Remote SimGrid. RSG provides a
rsg_server program in which the SimGrid simulation takes place, and a librsg
library used by the processes of the distributed application under study. The SimGrid
actors defined in rsg_server incorporate a Remote Procedure Call (RPC) server, which
offers clients to remotely perform an action on the server or to access some data
on it. Here, rsg_server creates and attaches a unique RPC server to every actor of
the simulation. As a result, each actor is remotely controllable by the attached RPC
client. The RPC client is implemented in the librsg library, which exposes SimGrid
concepts (defined in section 7.3.1) through its own API.

7.3.2 Implementation Details

The API of RSG allows to issue put/get requests on a mailbox synchronously or
asynchronously.

SimGrid predicts the time taken by each activity and orchestrates the actors accord-
ingly. To do so, SimGrid must know which activities every actor wants to do, so
that it can compute what activity will finish next (and when). As a consequence,
user-provided functions used as actors must not fall into a pattern where they do
not call the provided API anymore — aka fall into an infinite loop. While this may
sound trivial, we have observed that forgetting about this is a common pitfall when
using RSG for the first time. As a rule of thumb, we advise that the inter-process
synchronizations of the studied application should either be fully simulated (via
mailboxes), or that synchronization loops should contain API calls that advance the
simulation time (typically, let the actor sleep for a while) — as this will pass the
control to another actor, that will hopefully unlock the situation.

106 Chapter 7 Tools for Emulation: Interception, Remote SimGrid and sgwrap

RSG API

RPC
Client

User
Process 1

RSG API

RPC
Client

RSG API

User
Process 2

RPC
Client

RSG API

User
Process 3

RPC
Client

System process

Actor 4 Simgrid actor

Network
communication

Placement

Simulation
Clock

Remote SimGrid server

Host 1

Host 3

Host 2

Actor 1

RPC
Server

Actor 3

RPC
Server

Actor 4

RPC
Server

Actor 2

RPC
Server

Figure 7.1.: Overview of a simulation with Remote SimGrid. The simulation consists
of 3 hosts and 4 actors. Actors are bound to hosts, representing where the
actors’ actions take place. Each actor is controllable remotely thanks to an
RPC mechanism. A single actor is automatically spawned per user process by
default. This is not limiting, as actors can spawn other actors — e.g., here,
actors 1 and 2 are part of the same system process.

7.3.3 Related Work

To the best of our knowledge, only a few solutions exist to sandbox existing appli-
cations in simulation. Most works in the literature mandate the use of a model of
the application. These models are usually manually built, as in [New+15] where
the authors maintain a model of the twitter infrastructure to formally verify that
sough properties are met. However, maintaining such models up-to-date with their
implementations requires a lot of work.

Other works propose to automatically build the application model. For example,
MPISE [Fu+15] couples static analysis and symbolic execution to build a model that
can then be used to verify some properties. This approach is very promising, but the
obtained models are so far limited to qualitative studies while our goal is to also
conduct quantitative what-if studies on the simulator. It is also unclear how this
approach could be generalized to non-MPI applications.

7.3 Remote SimGrid 107

DCE [Taz+13] aims at studying slightly modified arbitrary applications with the ns-
3 [RH10] network simulator, and is therefore close to sgwrap presented in section 7.4.
DCE focuses on real network protocol implementations and thus allows the study of
kernel code. To that extent, the network protocols implementations of the kernel are
provided as a shared library, that is also in charge of the synchronization with ns-3.
Specific code is injected (using LD_PRELOAD) at the libc level to call the DCE kernel
instead of the usual one.

In DCE, the authors chose to group all emulated processes under study in a single
system process. This reduces context switching overhead during the simulation
and arguably eases the application debugging with a single process debugger. We
took the opposite design decision for sake of simplicity and robustness. Indeed, this
process folding requires to privatize the global variables in the application but also
in all libraries. This requires some OS-level tricks that are difficult to automatize
and often interact badly with other tools that can be used when debugging the
application (e.g., the DMTCP [AAC09] checkpointer). Besides, the ease of debugging
implied by grouping a distributed application into a single process is debatable, as
both have the same overall number of threads and can be fully deterministic.

7.4 C Standard Library Interceptions
wide part of the distributed RJMSs is programmed using the C library. This is also
the case for most RJMS: Slurm, Flux, and Torque to cite a few.

In this work, we propose to model with RSG the concepts featured by the library
C (libc) that helps the development of most distributed applications, namely the
processes API (POSIX), the threads and the synchronizations, the function to poll
the system time, and finally, the socket API enabling to communicate through the
network (and the processes on the same machine). Coupling this modelization of
the libc functionalities with a method for intercepting the libc function, we are able
to run real-world applications without modifying the source code.

We propose an implementation of this modelization into a project called sgwrap.
The implementation is inspired by the Simunix project. sgwrap is a collection of
four C++ libraries dedicated to model libc functions with RSG. Each library features
the interception of one of the features provided by the C library. Namely, time
management (sleeping or getting system time), the threads and synchronizations,
the network sockets, and the system processes (forking for instance). The libraries
are designed to be executed together, however, this architecture enables to select the
intercepted features by activating only the required libraries.

We built the network interception part of sgwrap upon an existing C library called
socket_wrapper [@cwrap], which redirects the network traffic of a distributed ap-

108 Chapter 7 Tools for Emulation: Interception, Remote SimGrid and sgwrap

plication through inter-process communication (IPC). The redirection is made by
using library preloading, as described previously. To summarize, socket_wrapper uses
LD_PRELOAD to redirect all sockets into IPC sockets.

7.4.1 Choosing the Intercepted Functions
The first class of functions to intercept are the functions related to the time. One
objective of the simulation is to test new scenarios, during an experiment the
time is important information. RSG (thanks to SimGrid) predicts the time that
communications will take on the simulated platform. Therefore, the time of the
simulation needs to be injected in the emulated program.

The second class of functions that need to be intercepted are blocking functions.
Indeed, with RSG one actor of the simulation is executed at the time until it gives
the control back to RSG. RSG decides which actor is running, and at each call to RSG
(such as sending on a mailbox, or sleeping) the process gives the control back to RSG.
If the simulated process initiates a blocking function, such as waiting for a signal
or a Mutexes, the process never gives the control back to RSG which hard-locks the
simulation. To satisfy this constraint sgwrap must implement every blocking function
of the libc used by the program. This includes the communication functions (such as
the sockets), the synchronization functions (Mutexes), the signals, etc.

The third class of functions contains the functions related to processes and threads
management. The libc provides a wide API to manage, and control processes and
threads. It is a common pattern to use the fork function to create new processes (a
child). Furthermore, the libc provides a function to permit the parent and the child
to communicate using dedicated channels. To keep the simulation consistent, sgwrap
needs to keep track of the new processes, and include them in the simulation — each
new process (forking) or thread needs to have a dedicated RSG actor. Otherwise, if a
child’s process is not integrated into the simulation, a parent may try to communicate
with it and locks the whole simulation.

7.4.2 System Time Interception
The libc features different functions to, either retrieve the current time of the system
or to wait for a specific duration (sleeping). RSG provides both possibilities, from
any actor it is possible to ask the current time of the simulation or to sleep for a
specific duration. Modeling the time is directly made by RSG, and doesn’t present any
difficulty as it is a direct match between the libc and RSG’s simulation concepts.

7.4.3 BSD Socket Interception
Sockets are the core part of the application programming interface (API) provided
by the operating system (OS) to interact with the network. A socket is an abstract

7.4 C Standard Library Interceptions 109

Network
(Internet, LAN, ...)

send()

Process 1

libc

OS

libc

OS

Process 2

recv()

Physical layer

LD_PRELOAD

Simtercept

librsg

send()

Process 1

Simtercept

librsg

Process 2

recv()

RPC connection

RSG server

SimGrid

Figure 7.2.: Representation of the usage of sgwrap on a simple application composed of
two processes. The left side shows how processes communicate usually —
without sgwrap. On the right side, communications are simulated using Remote
SimGrid. This is done by sgwrap, which intercepts calls to the BSD socket API
and calls Remote SimGrid accordingly.

representation of an endpoint of one communication across a network or the Internet.
Almost all distributed applications are programmed with sockets — unless they
are executed without an operating system. Usually, applications do not manage
sockets by communicating directly with the OS (via system calls) but prefer to rely
on the standard library of their programming language. The C standard library
(libc) typically encapsulates such communications with the OS in functions such
as listen or send. Interestingly, most high-level programming languages decide not
to reimplement such functions but to wrap their API around calls to libc functions.
This means that almost all distributed applications, regardless of their programming
language, use the same limited set of functions from the libc to interact with the
network.

In this section, we present a methodology to study using simulation any distributed
application that uses libc functions to interact with the network. This methodology
is implemented in sgwrap [@simtercept], which is a free library based on Remote
SimGrid.

sgwrap works by rerouting the network traffic of the target application into a SimGrid
simulation. This is done by providing a custom implementation of the libc functions
related to sockets that use Remote SimGrid internally. The application to study is
executed in such a way that its libc functions are overridden by ours. Technically, this
is done by executing the application with an adequate LD_PRELOAD environment
variable, which changes how the system loads the program in memory. Figure 7.2
illustrates the general idea of sgwrap.

The remaining of this section describes how we used the generic concepts of Remote
SimGrid to implement the OS behavior behind the socket API of the libc. The

110 Chapter 7 Tools for Emulation: Interception, Remote SimGrid and sgwrap

following paragraphs mention the different stages of a socket life-cycle and explain
how each one of them is simulated.

Socket Initialization. When an application wishes to create a socket, it calls the
socket function that asks the OS to create an internal representation of the desired
socket. Once the socket is created, the system returns a unique socket identifier to
the caller. This identifier will be used in every subsequent function call to identify
the connection. sgwrap intercepts the creation of the socket and creates and stores
a virtual socket instead. The virtual socket is a structure containing metadata and
information on the socket, such as its type or connection state. It allows sgwrap to
keep track of the sockets. When a process desires to create a server (i.e., a socket
willing to start multiple connections), it needs to assign an address to the socket,
and then to set the state of the socket to listening. The functions bind and listen serve
this purpose. sgwrap intercepts these calls, registers the socket binding address, and
creates a pairing mailbox corresponding to the address — that is used during the
connection stage.

Connection. Communicating sockets from two processes go in pairs. One socket
needs to be identified as the client and the other as the server. A server socket, after
having been assigned to an address, and after having been put into the listening
state, can accept new connections. For this to take place, the client socket needs to
know the address on which the server socket is listening. The client can then ask the
server socket to engage a new end-to-end connection. The functions in charge of
setting up the connection are connect (on the client side) and accept (on the server
side).

sgwrap models this connection mechanism thanks to different mailboxes. First, a
pairing mailbox is used so that the server detects the connection from the client. The
pairing mailbox name is based on the listening address of the server. The server gets
on the pairing mailbox, while the client puts a pairing message on it. This pairing
message contains a unique identifier generated by the client, that is used right away
so that the server can acknowledge information to the client. This is done on an
acknowledgement mailbox, whose name exactly corresponds to the unique identifier
generated by the client. Finally, the information acknowledged by the server allows
to create two final transfer mailboxes, that will be used to do the actual data transfers
between the two sockets — one mailbox per direction of the connection.

Data transfer. Once a connection is established between a client and a server, the
two sockets can exchange data with the complementary send and recv functions.
Both functions take a buffer and a size as parameters. Usually, the system is in charge
of caching the received data on a socket, so that successive calls to the recv function
fill the user buffer with the remaining data. sgwrap intercepts these two functions
and exchange data through the transfer mailboxes created in the connection stage.

7.4 C Standard Library Interceptions 111

As message transfers on mailboxes are based on messages rather than bytes, sgwrap
stores the received message in a buffer to comply with the expected recv behavior.

Other functions Many other functions exist, poll, formerly select, and addsockopt
that enables to tune the behavior of the communications. The function poll waits
for one of the descriptors provided as a function parameter. sgwrap can model this
behavior thanks to the function wait_any provided by Remote SimGrid. wait_any
allows waiting for communications on an ensemble of mailboxes.

Accessing the real network. sgwrap intercepts all functions related to the network,
it includes the function used by RSG that should not be intercepted to access the
RPC servers (7.1). To cope with this issue, we benefit from the fact that when a
network function is called with a socket unknown to sgwrap, the original function
is called. The key is to deactivate sgwrap (this is done by removing environment
variables configuring sgwrap) during the connections between the RSG client and
RPC servers. Once the connection is up (one socket exists and is connected) and is
unknown by sgwrap, we can activate sgwrap again to continue the interception and
the simulation.

7.4.4 System Process Interception

This section describes how we use the RSG’s simulation concepts to model the system
process, and therefore being able to simulate them.

The libc features a set of functions to create, kill, and synchronize processes. New
processes can be created by cloning an old process through the function fork [NL16].
A new process is creating and has the same — but isolated — state. When the system
clones a process, the resources allocated to the process are not duplicated, instead,
the resources are shared. This is true for the process’s files, the signals handler, and
for the virtual memory. However, the virtual memory is set into a copy-on-write
state, which means that the memory is copied once a process tries to write it.

As the only way to create a new process is to clone an old one, the libc also features
a set of functions to override the current process to start a new executable file — or
a script file —, the exec family of functions. At the call of one of these functions, the
process state is replaced by a new state corresponding to the new program, note that
the shared resources, such as file descriptors, for instance, are not necessarily freed.
One of the execv family functions is commonly used in conjunction with fork, to
create a new process and then start a new program in the newly created process.

The function pipe creates a unidirectional data channel for communication between
two processes. This function creates two file descriptors, one to send data, the
second one dedicated to the reception.

112 Chapter 7 Tools for Emulation: Interception, Remote SimGrid and sgwrap

Lastly, the libc provides a unique identifier to each process, called the pid. This infor-
mation can be accessed from inside the process with the function getpid. Additionally,
the function getppid enable a process to access its parent pid.

Modelling fork. With the simulation’s concepts proposed by RSG, forking is similar
to the creation of a new actor. However, to fully respect the forking process, the new
actors need to have an isolated state. In order to be able to model the fork system
call, RSG provides a function to create an actor into a newly forked process.

The function works as follows, first the current actor sends a message to the RSG
server to create a new actor (using its RPC server.). When the RSG server receives
this request, it creates a new SimGrid actor (containing an RPC server as depicted in
Figure 7.1), and returns to the caller the id of the newly created actor. At this step,
the RPC server of the new SimGrid actor is waiting for the remote actor to initiate
the connection. Once the first request to create a new actor has returned, the remote
original actor calls the real fork system’s call. The initial process (also called the
parent) send an acknowledgment to its RPC server, and returns from the function.
The child process (the new remote actor), inherits the environment of its parent,
and thus, is still connected to the RPC server of its parent actor. To cope with this
issue, the child remote actor deletes the connection with its RPC server, and then
initiate the connection with the new waiting RPC server. Note that, the child process
does not close its parent connection because the RPC server would interpret that as
the completion of the parent actor, and shut the connection down.

From sgwrap point of view, the fork is intercepted and has to handle two issues.

1. The first issue is as explained in section 7.2, that the LD_PRELOAD variable
prevents RSG from using the real libc fork function, and instead the function
will be recursively called indefinitely.

2. The second issue is related to the socket interception described in the previous
section. During the RSG fork (described previously), the RSG client needs to
use the network to establish a connection with its RPC server. As explained, at
the end of the section 7.4.3, we disable the socket interception during the fork
function. Once the remote actor is connected to the RSG server, we activate
the network interception.

Modelling Exec Functions. On a call to execv function, the process will switch into
a new state instantiating a new program. The current environment variables of the
process remain untouched, and all active file descriptors stay open. However, after
using execv, the RSG client of the actor will be destroyed (but the connection will
remain active). sgwrap defines a constructor function (__attribute__((constructor))),
which is a special function that is called when a shared library is loaded (during
program startup). By setting the appropriate environment variables, sgwrap is able to
connect back to the RSG connection of the actor during the call to the constructor.

7.4 C Standard Library Interceptions 113

Modelling PID and PPID. Within the RSG simulation, each actor has a unique ID.
When sgwrap intercepts a call to getpid, the id of the actor is provided as PID. The
PPID, is undefined by default (set to -1) if the actor is directly created by RSG. When
a process uses the function fork, and therefore creates a child process, the PID of the
parent is stored into an environment variable. Enabling a way for sgwrap to provide
the PPID, when it intercepts a call to getppid.

Data transfer. The pipe interception (described earlier) is coupled with the socket
interception (described in the previous section). This is mainly due to the fact that,
once it is created, the functions used to transfer data within the pipe are the same as
the function used for the sockets (write/send and read/recv).

At the interception of a call to the pipe function, sgwrap creates two new identifiers for
the file descriptors and creates one mailbox associated with the two file descriptors.
Once the pipe is created, when the process initiates a data transfer (with send or
receive for instance), sgwrap intercept these calls and transfer the data through the
RSG mailbox associated to the file descriptors.

7.4.5 Threads Interception
Threads can be seen as lightweight processes. A thread can be created by a process
and is also scheduled by the system. Unlike the processes, all the threads of the same
process share the same fundamental parts (same program, same virtual memory,
same file descriptors, and same stack). Thus, using threads facilitates communication
as everything is shared. However, the order of the execution of each thread is not
controlled by the process and is subject to race conditions — two threads using the
same variable at the same time.

To deal with the race conditions, the system provides different synchronization
mechanisms accessible using the C library. One can cite, the mutexes and the
condition variables, which are both intercepted by sgwrap.

• A mutex can be seen as a barrier used to protect the critical part of a program.

• A condition variable (CV) is another synchronization mechanism that enables
a thread to wait for new events to happen.

Modelling Threads. sgwrap intercepts the calls to the function pthread_create to,
instead of creating a thread, create a new RSG actor. At the creation of a new thread,
the caller gives a function that will be executed by the new thread, sgwrap provides
the thread function to RSG to be the actor main function. From sgwrap’s point of
view, a thread is a new RSG actor. However, the creation of a new actor in RSG
triggers the creation of a new thread, in this case, RSG needs to be able to use the
original system’s function pthread_create. Similarly, the fork function, this is done by
using a global variable in sgwrap, to detect cases where the original function must

114 Chapter 7 Tools for Emulation: Interception, Remote SimGrid and sgwrap

be called without being intercepted. Additionally, for the creation of a new remote
actor, RSG needs to create a new socket without being intercepted, as for the fork
function it is done by temporally removing the environment variable enabling the
network interception.

Modelling Mutexes and Condition Variables. Modeling mutexes and condition
variables are directly done using the RSG API. Indeed, as SimGrid directly features
both synchronization mechanisms into its API to synchronize actors. The functions
defined by SimGrid are thus implemented into RSG. This direct match enables sgwrap
to call the appropriate function when a function call to the mutex or condition
variable is intercepted.

7.5 Conclusion
The objective of this chapter is to separate the tools and mechanisms from the
methodology developed and used to simulate RJMS. This separation enables to
provide an in-depth description of the technical projects developed for this disserta-
tion.

7.5 Conclusion 115

8Reproducibility of Experiments
with Variations

Reproducibility in computer science should be a main concern for the credibility of
every scientific contributions.

But, what is the real purpose of reproducibility? It is the capitalisation on the work
of all the people of the scientific community, to move forward scientific knowledge;
so the science is not restarting from scratch every time that a scientist disappear. It
is common that a project dies, because the only people that have essential unwritten
knowledge are hit by a truck; or because it has been left unmaintained for too
long [Hin19]. Because computer science is based on software, it is possible to avoid
this issue with good practices in software engineering, like composability and good
documentation. But, while the science evolves, simulations become more accurate,
and the scientific software stack becomes more complex. Thus, even if the project
is documented, going from source code to runnable experiment, i.e. the building
process, can be tedious. Moreover, good software engineering is not recognized as it
should in computer science research community. Thus, there is no incentive to take
the time to do it right. So, reproducibility in computer science needs to be backed
with new methodologies, good practices, and appropriate tools, to be able to build
and transmit scientific knowledge more efficiently.

Reproducibility is a wide notion that needs to be specified. Feitelson [Fei15a] has
defined a taxonomy of the different way to reproduce scientific results. In this
taxonomy, The first level of reproduction is the Repetition, i.e. do exactly the same
experimental process to obtain the same results. The second level, Replication is
similar but the experience’s input is changed.

Currently, most of the reproducibility tools only support these two levels by capturing
the software environment. Indeed, software environment is hard to reproduce,
and without it, it is impossible to run the experiment. Also, experiment software
environment tightly depends on the Operating System (OS) distribution it was built
on. It is sometimes impossible to install it on an other distribution because of inter
dependency issues. One approach to solve this problem is to snapshot the software
environment into an image. But, even if an image of the experiment runtime
environment is provided by the original author, continuing his work requires more
than just repeating the experiment; to be able to corroborate someone’s approach,
we not only need to rerun experiments, but we also need to modify them: test new

117

variations, add more parameters, and develop new features. This is the next level of
reproducibility in the aforementioned taxonomy, called Variation.

Enabling scientists to reproduce an experiment with variation requires that the
reproducer is able to rebuild experiment software with some modifications (even if
the software is unmaintained and the tools necessary for building it, are long gone).
It means that the reproducibility with variation can be achieved if the reproducer is
able to reproduce not only the experiment “production” environment, but also the
“development” environment which is necessary to modify the software. Moreover,
when a variation of previous experiment produces new results, this experiment
should also be reproducible.

In this context, we are proposing a new way of seeing reproducibility through
the scientific software development lifecycle. Each step in this lifecycle requires a
software environment. We define a software environment by a set of applications
and libraries, with all their dependencies, and their configurations, required to
achieve a step in a scientific workflow.

All the experiments of this dissertation have been designed with a special attention
to their reproducibility. All software have been made publicly available. A.2 lists
of the different repositories used for the work of this dissertation, which has been
made following the methodology presented in this chapter.

This chapter has been made in collaboration with Michael MERCIER and Olivier
RICHARD, and led to one publication [MFR18]. This work has also led to one
tutorial1 about creating reproducible experiment with Nix, the tutorial has been
written in collaboration with Millian POQUET, and presented at Inria Rennes in
2019.

8.1 Software Development Workflow and
Reproducibility

In computer science, a scientific workflow contains a software development lifecycle
that starts by setting up a development environment with build tools and dependen-
cies. Then, this environment is used to build a production environment that will, in
turn, be used to run the actual experiment. But, software development is an iterative
process: one can produce different versions of the production environment, or even
modify the development environment to update or to add tools. This process is in
the middle of the scientific workflow and all the software environments produced,
for development and production should be captured to enable reproducibility. The
Figure 8.1, exhibits that the first two levels of reproducibility can be achieved with

1https://nix-tutorial.gitlabpages.inria.fr/nix-tutorial/

118 Chapter 8 Reproducibility of Experiments with Variations

https://nix-tutorial.gitlabpages.inria.fr/nix-tutorial/

build with
different

parameters

modify

...

build

Dev
version 1

Prod
version 1.1

build

Dev
version 2

Prod
version 2

Prod
version 2.1

original
Inputs

modified
Inputs

original
results

new
results

Repetition

Replication

Variation

modify

Figure 8.1.: The different level of reproducibility in regard to the development lifecycle:
Variation requires to enclose the development environment and to provide a
way to modify it while keeping reproducibility.

8.1 Software Development Workflow and Reproducibility 119

only one environment, but reproducibility with variation requires taking into
account the whole development process.

To contribute to the scientific workflow, it has to be reproducible by itself: Thus,
internal (e.g. colleague, intern) and external (e.g. scientist from other laboratory,
reviewer) contributors have the capability to reproduce this workflow.

So, to provide this capability the development environment should be defined
entirely, and every changes should be tracked. This statement also holds for others
software environments involved in the authors’ workflow, like the ones use for input
data generation, or output data analysis.

8.2 Reproducible Software Environments with Nix

Courtès et al. [CW15] emphasize that functional package managers (FPM), like Guix
and Nix, are good candidates to share complex and upgradable environment. In the
following of this paper, we will focus on Nix, but most of the assertions also hold
for Guix. The FPM are applying the concept of mathematical function to software
packaging. Each software building process is described through a function. The
dependencies are also functions that are given as inputs. This function, or package
definition, allows to precisely describe a package: where and how to gather the
source code, which commit to use, the dependencies and their versions, and finally
how to build the package. When a package is built, the dependency graph is resolved
by a lazy evaluation of the function parameters, and all the necessary piece of
software are also built. The result of the evaluation of a package definition is called
a derivation. A derivation is concretely a set of files that contains the results of the
building process of the software, which placed on the special place that contains
all the derivations: the store. Finally installing a software is simply exposing a
derivation from the store through symbolic links. Nix packages are written in a
functional Domain Specific Language (DSL). This ensures that each build is pure, i.e.
it only depends on its inputs, and the same inputs give the exact same package even
on a different machine.

To implement the workflow described in Section 8.1 with Nix, the critical feature is
the capacity to create a software environment without virtualization. This feature
is used to create an isolated environment for the package building process. An
environment can be seen as a set of derivations and relies on the fact that an FPM
can infer all the dependencies of a derivation, and only expose these dependencies
on the specified environment. Installing the environment will expose to the user the
packages described in the environment. Archiving an environment will extract the
whole dependency tree of the environment and create a self-contained archive. The
resulting tarball, also called a closure, contains every binary and file necessary to

120 Chapter 8 Reproducibility of Experiments with Variations

run the packaged applications. Thus, the environment can be installed on another
machine without any external download or building process.

To achieve each level of reproducibility with Nix, the first requirement is to create a
package definition for each application and its dependencies. Thankfully, Nix is a
very active community and more than 40000 applications are already packaged in
the main repository called “nixpkgs”. It is also possible to maintain a private set of
packages that import dependencies from “nixpkgs”.

The first level of reproducibility, the Repetition, can be achieved by providing to
an external scientist the production closure, that can be installed to repeat the
experiment. The environment could also contain all scripts to deploy and run the
experiment.

The second level of reproducibility, the Replication, that consists of replaying an
experiment while changing its input, have the same requirement as the repetition:
Only the production environment is needed.

The third level of reproducibility, the Variation, is where using Nix is the most
advantageous. Nix provides the interesting feature, called the “nix-shell”, permitting
to enter the package build environment. Hence, packaging a software with Nix have
the side effect to provide also the build environment for the users. Nix capacity to
define software environment and software package in a unified way gives the scientist
the ability to share a reproducible production environment, and the associated
development environment, with a single definition.

8.3 Related Work
The Popper method, proposed by Jimenez et al. [Jim+17], describes a structural
framework for dependencies and artifacts. They identified a generic workflow
describing an experimental methodology, from source code to the final manuscript
of a contribution. Our contribution is compatible with this approach, the popper
method proposes a structural organization of the experiment, whereas our approach
proposes to implements a part of this workflow using Nix.

Repeatability has been the focus of previous works on reproducibility. The platform
presented in [Ric+15], has the ability to instantiate an experiment environment
in their infrastructure from a previously captured environment. The approach is
interesting as it provides a way for a scientist to repeat experiments that requires
specific hardware. Our approaches could be complementary to cover both hardware
and software to provide a higher level of reproducibility. Boettiger et al. [Boe15]
survey how to use docker to do reproducibility, and also introduce the development
environment. From our implementation with Nix, the docker approach shows
similarities. However, Nix closure is more adapted than the Docker images for

8.3 Related Work 121

application packaging because Docker provides an inappropriate level of abstraction:
Docker is about constructing and configuring a complete OS, instead of declaring
application dependencies.

Constructing reproducible experiment and workflow with an FPM has already been
explored. In [Wur+18], they build a toolset upon the GUIX FPM, to facilitate the
usage of bioinformatics common pipelines. They argue that using an FPM is a good
foundation for reproducible computational experiment workflow.

The Blue Brain project [DDS15], is a big project, with a complex software stack, that
aims to build a mammalian brain with a computer. In addition to a structured devel-
opment workflow (using git, agile methodologies, code reviewing), they decided to
package their workflow with Nix. They identified nine properties that are facilitated
with Nix, from reproducibility to deployment and cross compilation. Their approach
is based on internal needs and specific use case, whereas our contribution focuses
on the role of the development lifecycle in the reproducibility, with Nix as a possible
implementation.

8.4 Discussion
The proposed workflow does not consider input and output data of the experiment.
One approach is to package the experiment data inside the production environment,
i.e., the environment containing all the software and tools necessary during the
experiment phase (the production phase). It is a viable solution for a small amount
of data, but most of the experiments manage data separately with other tools.

The data related to the experiment is not only input and output data, the different
piece software that are used to develop and run the experiment also have external
inputs, like the source code of the experiment, the dependencies, the build tool
binaries, and the configuration files, i.e., all the other artifacts necessary to build the
pieces of software of an experiment. With Nix, it is easy to extract these artifacts for
the software necessary during the experiment (the production environment). Nix is
capable to export all the dependencies of an environment in a closure that can be
imported on any machine where Nix is installed. This feature of Nix is very hard to
achieve with other kinds of tools because of the lack of a clear dependency definition.
However, even if it is straightforward for the production environment, how to extract
this closure for the development environment (the environment containing the build
tools) is unclear for now.

Capturing and archiving the environment closures is necessary for the Variation,
for instance, the lifespan of Internet links is only a few months [Law+01]. Even if
Nix is capable to rebuild everything from source, the source code repository can be
unavailable, breaking the environment reproducibility. The problem that emerges is

122 Chapter 8 Reproducibility of Experiments with Variations

that closures also have to be safely archived, versioned, and accessible for a long
time period. A mid-term solution would be to store those closures using trusted
centralized archives like Internet Archive2 and Software Heritage3.

Nix itself has limitations, his usage requires to understand the concepts behind the
FPM and to learn the Nix language. Also, even if the Nix build system provides
the framework to achieve reproducible build of packages, the bit-wise reproducibil-
ity [Lam+] depends on the way the software itself is built, i.e., patching the Makefile
may be required.

In the case where the experiment results depend on the OS Kernel (e.g., performance
evaluation) this approach is not sufficient. Indeed, Nix packaging handles the whole
application software but not the OS Kernel. So, the proposed workflow needs to be
supplemented with a building process definition of the entire OS — and not just the
application layer — to be able to reconstruct a complete OS image with a variation.
A Linux distribution based on Nix, called NixOS, is a good candidate.

When specific hardware is necessary to achieve reproducibility, an additional layer
of control is needed. Testbeds like Grid’5000 [Bal+13], Chameleon [Kea+19], and
Emulab [PSM10], are giving this level of control with the capability to create and
deploy OS image on the fly on different hardware. Additionally, one also need to
provide a description of the hardware used during the experiment, or the allocated
resources.

8.5 Conclusion
The reproducibility with variations is the next level of reproducibility that the
Computer Science community should aim at. The variations require to take into
account the software development workflow, including the capability to modify
and rebuild environments. The use of functional package managers is a promising
approach. This kind of tool permits to achieve this next step to the reproducibility
with variations, with a unified way to describe environments and packages, and a
simple method to backup and to restore them.

2https://archive.org
3https://www.softwareheritage.org/

8.5 Conclusion 123

https://archive.org
https://www.softwareheritage.org/

9Conclusion

The role of the Resource and Job Management System (RJMS) is central to a cluster:
It manages the resources and the jobs. Current RJMS needs to embrace both the
evolution of the clusters and the jobs. The scheduling policy is the cornerstone of
the RJMS, it decides when and where a job will be executed on the cluster. The
production constraints of a computing cluster impose the scheduling policy to take
efficient decisions in a short amount of time. Finding a good policy is challenging
and has been the subject of numerous works during the past decade. Evaluating
the relevance to use a scheduling policy in production from the previous study is
challenging, it outlines the difference between the real world between the ideal
world of the studies.

Chapter 2 presents the state of the art of this dissertation focusing on the tools
and methodologies to conduct experiments with RJMS. It exists four different
methodologies, the emulation, in-vivo, the benchmarking and the simulation. Each
methodology illustrates if the experiment uses a model or the reality regarding the
RJMS, and the platform. However, these four categories alone are not sufficient
to categorize all the experiments done in the literature, because the limit between
model and reality is not always well determined. Instead, several experiments mix
approaches that rely on model and reality, for instance, simulating a cluster with
virtual machines is both reality (the operating system) and model (the physical
resources are virtual). For this reason we introduce the idea of Hybridization
(fig. 2.1) mixing approaches based on reality and model.

9.1 Contributions and Future Work
The contribution of this dissertation is twofold: We present a new scheduling policy
for HPC jobs, and through two different works we improve the tools used for
experimenting with RJMS. More specifically, the first work focuses on creating a
model for job scheduling simulation, and the second work proposes a new tool to
emulate a distributed system, and therefore an RJMS.

9.1.1 Scheduling with Job Redirection
Chapter 3 introduces a new scheduling policy to schedule jobs with redirection.
Redirected jobs are killed and restarted on a dedicated resources pool. The objective
of this policy is to improve the slowdown metric, which is a measure of the system’s
reactivity form the user’s perspective. Through a large experiment campaign of

125

simulations, the policy has been shown efficient for the slowdown metric, at the cost
of increasing the waiting time.

Redirection is a practical extension of a former theoretical work studying rejection
as a way to increase the scheduling performances [LST16]. This work aims to bridge
the gap between theoretical and practical works, and shows that a theoretical idea
can be adapted in a more practical environment using recent simulation techniques,
and simulation models closer to a production system (parallel jobs on multicore
clusters).

Despite the current evaluation, it is difficult to adapt the redirection in a production
cluster as the simulations are not fully representative of a real cluster. For instance,
the migration time of a redirected job is not simulated. Therefore it is difficult
to evaluate the relevance of the redirection in a real setup. The remaining of this
dissertation presents two different, yet complementary approaches for the evaluation
of scheduling policies and RJMS. The first approach proposes to increase the realism
of the scheduling simulation, and the second approach proposes new tools and
methodologies to study real RJMSs.

Additionally to the future works presented in chapter 3’s conclusion, the methodology
developed in this work can be leveraged to conduct experiments more representative
of a production cluster.

9.1.2 Simulation Model with Job Resources Consumption

Simulation has many advantages it is fast to execute on a single computer, it can
represent a lot of different scenarios and it is easily reproducible. Simulation, by
essence, strongly relies on models. Therefore, the ability of a simulation to accurately
predict a scenario is dependant of the soundness of the underlying models. Current
simulators for HPC scheduling use simple model, the model simulates the jobs as
a fixed amount of time regarding their context of execution (the behavior of the
job, the capacity of the underlying platform and the other jobs executing at the
same time). However in production, the execution time of the jobs is dependant
of external factors, such as their placement on the cluster or the other jobs using
the same shared resources at the time (such as the interconnect or the parallel file
system etc.). In this work, we propose to extend the scheduling simulation with job
models that depends on their context of execution.

The first part of this work introduces and demonstrates the simulation capability of
the Batsim simulator (chapter 4). Based on the SimGrid simulation toolkit, Batsim
has the ability to simulate a platform and workloads containing models for the jobs.
Batsim currently features three job models, the delay, the Time Independent Traces
(TiT) and the ptask model. One difficulty to find model for scheduling simulation is

126 Chapter 9 Conclusion

that a single simulation can embed million of jobs. The model must be simultaneously
representative of a real job, and fast enough to keep reasonable simulation time.

Chapter 5 presents the second part of this work, it focuses on the evaluation of the
ptask model. Among the presented models, the ptask model present two advantages:
It is reasonably fast and has been created to represent parallel jobs. However, the
model has not been evaluated for HPC jobs. The evaluation methodology used aims
at evaluating the ability of the model to accurately predict the running time of an
HPC application under (periodic) network interference. The methodology used
compares the execution of the model (in simulation) with a real application (in a
real cluster) under different network interferences. The results shows that the ptask
model is able to reproduce the network interference of the HPC application without
being reliably accurate regarding the predicted run time of the application.

As future works, we outline two research directions:

• Model calibration. In its current state, the ptask model shows lack of accuracy.
Identifying the causes of the model’s inaccuracy is difficult because SimGrid is a
complicated software. One promising approach is to use the tracing capability
of SimGrid— that enables to trace the network activity of the platform’s
network links during the simulation — in order to pinpoint the inaccuracy’s
cause. Unfortunately, this tracing capability is currently broken. With more
insight on the model activity on the platform, it would be possible to add
parameters to adjust the behavior of the model and increase its accuracy.

Additionally, the ptask model makes the assumption that the application always
uses 100 % of the most limited resource. In practice, this behavior is not
necessarily true (or needs to be verified). One possible parameter to limit this
effect could be to add the possibility to limit the resources the application can
use, for instance, using 80 % of the total host speed instead of 100 %).

• Extending the model’s validation. The next proposed direction is to extend
the model’s validation. In the presented evaluation, we generate synthetic
interferences to stress the network during the application’s execution. However,
scheduling simulation involves the execution of multiple applications. The
model’s validation can be extended in three ways:

1. Evaluating the model’s accuracy with, instead of the synthetic network
interferences, use another application. Future works in this direction
replace the network interferences with other PDGEMM executions, to
validate that the behavior of the model is consistent when multiple appli-
cations are involved.

2. Secondly, it exists a large number of HPC applications. The in this
work, we validate the ptask model against a single, simple, application.

9.1 Contributions and Future Work 127

PDGEMM is not fully representative of a real production application. More
investigation with different HPC application is necessary to understand
which applications can be simulated with a ptask. One lead, is to compare
the ptask to the different application from the Nasa Parallel Benchmarks
(NPB) [Bai+91], or to proxy applications.

3. Finally, with the emergence of data-intensive workloads, data manage-
ment is an overgrowing concern for HPC centers [Asc+18]. In [Mer19]
the author uses Batsim to simulate data-intensive jobs (Big Data jobs)
along with HPC jobs. The main limitation of this work, is that the HPC
jobs use a delay model (section 4.3), and therefore the impact of the
data movements on HPC workloads is not observable. However, [Mer19]
results on Big Data jobs show that Batsim’s approach is promising to
simulate data-intensive scenarios. Further validation on the data transfer
models is necessary to increase our confidence in simulation regarding
this aspect.

9.1.3 Experimenting with Real RJMS: Simunix and Batsky

Experimenting with real RJMS has the advantage of being closer to a production
system than simulation. System administrators, for instance, can leverage these
work to tune the configurations of a system, or developers can test new features.
However, the tools and methodology used to set up an experiment with a real RJMS
are expensive in time, and often complex.

In this work, we propose two approaches to use a real RJMS on a single computer.

• The first approach, Simunix (detailed in section 6.2), aims at reproducing the
behavior of the operating system by intercepting the libc’s functions dedicated
to communications and time control. Simunix leverages the Remote SimGrid
(RSG) simulation toolbox to model the behavior of the computing platform.
Simunix project has been rewritten as a generic library, called sgwrap (sec-
tion 7.4). Hence, we propose sgwrap a library designed to simulate the C
library features related to distributed applications (BSD sockets, threads and
synchronization, and processes) and the functions related to time management.
sgwrap uses a different approach: cut into several libraries, sgwrap can be
used to intercept a subpart of the proposed features by only activating libraries
handling a specified feature, for instance intercepting only time and threads.

To support Simunix’s approach, we propose Remote SimGrid (detailed in sec-
tion 7.3) that is a simulation toolbox presenting simulation concepts suitable
for distributed applications. RSG is not dedicated to simulating RJMSs, instead,

128 Chapter 9 Conclusion

it is intended to works for any distributed software. For instance, ongoing work
from Millian POQUET focuses on the simulation of the OpenMPI runtime1.

• The second approach detailed in section 6.3, called Batsky, takes a transversal
approach: what if we only simulate the time during the experiments? The
main idea of Batsky is to be able to execute the RJMS Slurm on an environment
where the jobs and the time of the experiment are managed by a simulator.
The main difficulty of Batsky is to be able to control the simulation time to
accelerate the simulation, but to keep the system consistency. With its specific
design, Batsky is able to dedicate control of the time and the execution of
the jobs to an external simulator (Batsim), while executing a real RJMS. The
current prototype is able to execute a workload of 4 jobs, on 10 simulated
nodes in less than a minute.

As future works, we outline two research directions.

• Remote SimGrid is a promising tool to simulate real distributed applications.
With the actor model featured by RSG, SimGrid has the necessary functionali-
ties to simulate a distributed application. However, RSG lacks a terminated
proof of concept. Currently, two projects have a significant advancement, the
Simunix project that was able to simulate the RJMS Slurm with few nodes;
and an OpenMPI plugin to perform the network communications of OpenMPI
with RSG. Additionally, one distributed software could be a good candidate to
be simulated with RSG: the CEPH storage system [@ceph].

In the context of RJMS, the first project Simunix showed good promising
results to simulate Slurm on a single computer. As future works, reproducing
the approach with sgwrap is good to simulate Slurm with RSG. However, new
development is necessary to complete the project.

• Batsky: scalability, reproducibility and accuracy evaluation. The approach
taken by Batsky is new, and the current state of the project shows a proof a
concept. However, studying the scalability of the approach is a key point to
understand the scope of the studies that will be possible with Batsky. This can
be done by using larger workloads and more simulated nodes. In a second time,
evaluating (and improving) the accuracy and the reproducibility of Batsky is a
necessary step to be able to use it as a reliable scientific tool.

9.1.4 Reproducibility of Experiments with Variation

Most computer science research relies on software, as it is the case for the different
works in this dissertation. Some software has been designed and programmed for
the occasion, others are their dependencies. Special attention was given to the

1https://framagit.org/simgrid/openmpi-rsg-plugins

9.1 Contributions and Future Work 129

https://framagit.org/simgrid/openmpi-rsg-plugins

reproducibility of the experiments done for this works. A general methodology has
been extracted from the different works; leveraging the functional package manager
(FPM) approach, we were able to extract a general methodology to package and
design experiments involving computing programs. The methodology is based on
packaging a program, but also the whole set of software needed by the different
environments, such as its development environment or its execution environment.
Furthermore, we identified that, with this methodology, we were able to propose the
reproducibility with variations. Variation is the idea that experimenters can easily
replay past experiments, but also modify either the inputs to conduct complementary
experiments, or modify the code of the experiment to add new features or fix bugs.

As future works, we want to propose the software environment transposition.
The variation is an interesting idea, and it is easy to implement with the functional
package manager Nix. Reproducible software environments is a real asset for de-
velopers and experimenters. However, it doesn’t provide information regarding the
execution’s environment, that is to say, the place in which the programs are exe-
cuted. Nowadays, it is common to switch between different execution environments.
More especially, to have a different environment for the development, the tests, and
production. Each environment has different requirements: Development is often
carried on a laptop, testing can be done a dedicated infrastructure, and finally, the
final release is made in a dedicated platform (such as a Cloud or Fog computing).
Furthermore, with the evolution of deployment methodologies, one execution envi-
ronment can use containers, while others may use bare metal or traditional virtual
machines. Future research in this area would involve the transpositions of one
software environment from one execution environment to another.

9.1 Contributions and Future Work A1

AAppendix

A.1 PDGEMM

A.1.1 Nonblocking Broadcast
The parallel task model makes strong assumption about the progress of the parallel
applications, as it bundles the communication and the computations and adapts
their speed so that every activity finish at the same time. This supposes that the real
application has a communication and computation overlapping (the communications
occur during the computation phases). The proposed PDGEMM algorithm uses the
broadcast MPI collective which is a blocking call, the application stops until the
broadcast is completed.

However, MPI features the collective IBroadcast (nonblocking broadcast) which
is non blocking. Instead, this MPI function should starts the communication in
background and return immediately providing a request object. The request object
can be used to wait the end of the communication when it is needed.

Algorithm 5 shows a version of PDGEMM using nonblocking broadcast. First, at the
iteration k the only requirement is that the data transfers needed for matrix products
(line 23 to 31 of the Algorithm 3) need to be completed. Therefore it is possible at
iteration k to initiate the transfer for the data needed at iteration k + 1. In that way,
the data transfers for iteration k + 1 can occur during the computation phase of the
kth iteration. This is possible at one condition, the data for the first iteration needs
to be already present on each node, so that we can compute the first iteration.

A3

Algorithm 5 PDGEMM using nonblocking broadcast
1: procedure PDGEMM(id_ranks,world_size,matrix_blockA, matrix_blockB)
2: q ←

√
world_size

3: row_group← id_rank/q . Row group of the process
4: col_group← id_rank mod q . Column group of the process
5: group_row_id← get_id(row_group) . Process unique id in its row group
6: group_col_id← get_id(col_group) . Process unique id in its col group
7: resC ← [block_length× block_length]
8: buffAproduct ← [block_length× block_length]
9: buffBproduct ← [block_length× block_length]

10: buffAbcast ← [block_length× block_length]
11: buffBbcast ← [block_length× block_length]
12: if group_row_id == root_row then
13: broadcast_on_lines(matrix_blockA, source = True)
14: else
15: broadcast_on_lines(buffAproduct, source = False)
16: end if
17: if group_col_id == root_col then
18: broadcast_on_cols(matrix_blockB , source = True)
19: else
20: broadcast_on_cols(buffBproduct, source = False)
21: end if
22: for i← 1, i <

√
world_size+ 1, i+ + do

23: req ← Request[2] . Table of two empty requests
24: root_col_prod← root_col;
25: root_row_prod← root_row;
26: root_col← k mod q;
27: root_row ← k mod q;
28: if group_row_id == root_row then
29: req[0]← nonblocking_bcast_on_lines(matrix_blockA, source = True)
30: else
31: req[0]← nonblocking_bcast_on_lines(buffAbcast, source = False)
32: end if
33: if group_col_id == root_col then
34: req[1]← nonblocking_bcast_on_cols(matrix_blockB , source = True)
35: else
36: req[1]← nonblocking_bcast_on_cols(buffBbcast, source = False)
37: end if
38: if group_row_id == root_col_prod & group_col_id = root_row_prod then
39: resC ← resC +matrix_blockA ∗matrix_blockB

40: else if group_col_id == root_col_prod then
41: resC ← resC + buffAproduct ∗matrix_blockB

42: else if group_row_id == root_row_prod then
43: resC ← resC +matrix_blockA ∗ buffBproduct

44: else
45: resC ← resC + buffAproduct ∗ buffBproduct

46: end if
47: wait_all_requests(req)
48: swap_buffers(buffAgemm, buffAbcast)
49: swap_buffers(buffAgemm, buffAbcast)
50: end for
51: end procedure

A4 Chapter A Appendix

A.2 Reproduce Experiments
The experiments done for this dissertation are available online. The software
used are packaged using the Nix package manager, as for the software execution
environments.

• Chapter on Redirection 3: https://gitlab.inria.fr/adfaure/evipar. The exper-
iments have been conducted thanks to the Grid’5000 infrastructures. The
repository contains the sources to replay the experiments, and the data to
analyze without replaying all the simulations.

• Chapter on Job profiles 4: https://gitlab.inria.fr/adfaure/ptask_tit_eval The
repository contains the necessary source code, and Nix environments to replay
all the simulations (including generating the Time Independent Traces with
SimGrid) and the data analysis.

• Chapter on Ptask evaluation 5: https://gitlab.inria.fr/batsim/ptask-eval The
experiments of this chapter contains two independent parts: The real exe-
cutions and the simulation, and therefore several software environment are
necessary. The environment for the real execution (that is deployed on the
computing nodes of Grid’5000), the simulation environment containing the
SimGrid simulation source code, and the data analysis environments.

• Presented in chapter 6, the Batsky project is available at: https://github.com/oar-
team/arion-batsky The repository contains the necessary nix files to replay the
experiments, and simulate Slurm (on 10 nodes) with Batsky.

• Chapter on tools for emulations 7 presents sgwrap, the source code can be
found online at https://framagit.org/simgrid/sgwrap

A.2 Reproduce Experiments A5

https://gitlab.inria.fr/adfaure/evipar
https://gitlab.inria.fr/adfaure/ptask_tit_eval
https://gitlab.inria.fr/batsim/ptask-eval
https://github.com/oar-team/arion-batsky
https://github.com/oar-team/arion-batsky
https://framagit.org/simgrid/sgwrap

List of Figures

1.1 Overview of a Resource and Job Management System. The users submit
their applications, called the jobs, to the RJMS. The jobs scheduler
finds a number of nodes available according to the job’s requirements
and attributes a starting date at each one of them. The resources
manager manages the platform, monitors the nodes, and controls the
job’s executions . 3

1.2 Exhaustive job definition. 4

1.3 Example of a Gantt chart. It depicts the result a of scheduling policy.
The jobs are represented by the rectangles, the x-axis shows the time,
while the y-axis shows the set of allocated resources. 5

1.4 Experiment methodology for RJMS using workload replay. The experi-
ment’s setup contains a module (or program) that submits jobs. The
studied RJMS (or simulator) receives the jobs as if they were submitted
by the users. Once all the jobs are submitted and scheduled, one can
analyze the results in respect of the desired metric(s). 7

2.1 Hybridization mixes approaches based on reality and model. The blue
clouds locate the contributions of this work according to the hybridiza-
tion. The approaches using a model of RJMS are detailed in section 2.2.
The approaches based on real or hybridized (left column) RJMS are
detailed in section 2.3. Simulators with platform model is the focus
of chapters 4 and 5, RSG and Batsky approaches are detailed in 6. Chap-
ter 3 evaluates a new scheduling policy with a Discrete Event Simulator.
. 13

3.1 Division of the nodes of a cluster of m processors in respect of the
input parameter α, with 0 6 α 6 1. Both group are managed by an
independent scheduler. 30

A7

3.2 Lower is better — For each of the 20 workloads extracted from Curie,
we computed BSLDavg on the upper side and BSLDmax on the midel
line, the average waiting time (WAITavg) on the lower line. Each
violin is created by 20 such workloads under a certain set of parameters.
Each plot under the same line shows the same objectives, with different
perspectives. On the left plots, the redirection threshold is in the x-axis
and the y-axis represents the observed metric. Each column of the grid
represents a different allocation percentage α. While on the right plots,
the allocation percentage is in the x-axis, each column grid represents
a different threshold. 36

3.3 Lower is better, under horizontal line means that the redirection
is more effective — For each of the 20 workloads extracted from a
cluster, we computed the ratio of BSLDavg without redirection over
BSLDavg with redirection, and we did the same for the BSLDmax.
Each box is induced by 20 such ratios. The black line is the median ratio
and the red square the average ratio. The horizontal lines represent the
quartiles. The figure presents the results for each cluster, the two upper
figures deal with Curie, the middle one corresponds to Intrepid while
the bottom one concerns Ricc. 38

3.4 Lower is better, under horizontal line means that the redirection
is more effective — For each of the 20 workloads extracted from a
cluster, we computed the ratio of BSLDavg and we did the same for the
average waiting time. Each violin is induced by 20 such ratios. These
plots have the same structure than Figure 3.3, but focus on the waiting
time objective. Ratio of the average waiting time in blue (dark gray)
BSLDavg in green (light gray) . 39

4.1 Ptask communication matrix. The arrows show the direction of the
communications. 47

4.2 Example of how the application progress is computed using the ptask
model. At t = 0, the purple task (plain borders) uses the two nodes
at their full capacity, while the link is used at 60 %. Then, at t = 1, a
new task arrives (dashed borders) performing a data transfer on the
link, taking half the of the link’s bandwidth. Hence, the link becomes
the bottleneck of the purple task which has to adapt its load on the two
hosts. Finally, at t = 6, the green task (dotted borders) arrives with
some work on the two nodes, taking 50 % of the host’s speed. 49

4.3 Batsim overview, the scheduler takes decisions from the network proto-
col. The simulation inputs are a platform description and a workload of
jobs handled by Batsim. The simulated platform is handled by SimGrid.
The results of a simulation comprises data about the simulation, such
as jobs resources allocations and execution times. 51

A8 List of Figures

4.4 Example of a simplified exchange between Batsim and the scheduler
taking the scheduling decisions. The protocol is based on request-
answer, Batsim waits for a response for each request (the grey, and
white layers represent a request-answer phase). Batsim sends events
to the scheduler, such as new job submissions, or job completions. The
scheduler takes all scheduling decisions. 51

4.5 Network topology of the Graphene platform. The platform is organized
in 4 irregular cabinets, connected to a top switch with a 10 G Ethernet
link. 56

4.6 Mean (the error bar are the standard deviation) of the (real world)
duration for the simulation of the entire workload over 10 different
executions. The figure on the right zooms over the delay and the ptask
profiles. 57

4.7 The figure presents only the schedules for the workload containing 512
jobs. Each Gantt chart depicts the scheduling decisions taken by the
scheduler process, the first two upper charts correspond to the profile
of execution delay, followed by the ptask execution profile. The last two
charts on the bottom are the Gantt charts obtained with the TiT profiles. 58

4.8 Histogram of the waiting times and execution times for the different
profiles. ft.C.8 takes 8 machines for its execution, ft.C.16 takes 16 ma-
chines, and ft.C.32 takes 32 machines. The histogram on the left shows
the distribution of the running time per profile, the x-axis is the running
time in seconds. The histogram on the right shows the distribution of
the waiting times. The color shows the different scheduling algorithm
used, forced contiguity in purple (bottom) , not forced contiguity in
blue (upper histogram). 59

5.1 At iteration k, the processes on the kth line broadcast their block to the
other processes of their line for the matrix A. Once the fist broadcast
is done, the processes on the kth column broadcast their block to the
other process of their column. 67

5.2 Final configuration for the experiment. Figure 5.2a depicts the physical
setup of the nodes, while the fig. 5.2b shows the logical view we achieve. 69

5.3 Tcpkali evaluation (upper figure). Interference pattern examples (lower
figure). 70

5.4 Mean runtime of PDGEMM under different interference patterns
and broadcasts (blocking or nonblocking). 73

5.5 Paravance. Network traffic monitored on one MPI host, and on tcp-
kali server’s host for blocking broadcast. The upper figure plots one
instance for each interference pattern without subdivision, whereas the
lower figure plots it with 50 subdivisions. 74

List of Figures A9

5.6 Paravance. Network traffic monitored on one MPI host, and on tcpkali
server’s host for nonblocking broadcast. The upper figure plots one
instance for each interference pattern without subdivision, whereas the
lower figure plots it with 50 subdivisions. 75

5.7 Comparison of monitoring traces of Grisou and Paravance. The
plots show the configuration of PDGEMM with blocking broadcasts and
50 subdivisions. It appears that without interferences, Paravance and
Grisou have similar executions, the network activities are alike and
have the same execution times. However, under constant interferences
(bottom line), the bandwidth of PDGEMM is significantly lower on
Paravance than on Grisou and have a different execution time. 78

5.8 Comparison of the ptask with Paravance and Grisou for configu-
rations with 50 subdivisions. The error bar are only present for
Paravance and Grisou, they show the confidence intervals (95 %) of the
mean runtime. The 15s interference / 15s idle pattern has been removed
to increase readability. 82

5.9 Progress of PDGEMM and ptask over the simulated time until its com-
pletion (progress = 100). 83

5.10 Model parameters. 85

5.11 Theoretical model’s results for the different calibrations. The x-axis
shows the different values of α, corresponding to the different interfer-
ence patterns. 86

5.12 Illustration of how the ptask simulates a periodic application. The
dotted blue line represent an example of a real activity. The solid purple
line shows the activity of ptask’s simulating the blue line. 87

6.1 High-level illustration of a Simunix simulation involving two programs.
The execution of the two programs are on the same computer, and
therefore the SimGrid execution and the two programs share the same
operating system. Each process is executed into a different sandbox,
and the black arrows depict the function replacing the original libc
function and interacting with SimGrid. The sandbox is permeable: the
function that is not intercepted by the sandbox are executed normally
by the OS, on the other hand, the intercepted functions use the SimGrid
simulation. Note that to provide process isolation for each separated
actors, the sandbox accesses the SimGrid simulation using the RSG
project. 94

6.2 Example of usage of Simunix with Slurm. 96

6.3 Batsky overview. The Batsky-Apdater is the bridge between the simu-
lation and the reality, it controls the time provided to SlurmCtld, and
gathers information from the BatJob. The white arrows represent net-
work traffic between the different components. 97

A10 List of Figures

6.4 Sequence diagram of the simulation of a job with Batsky and Slurm. . 98

7.1 Overview of a simulation with Remote SimGrid. The simulation consists
of 3 hosts and 4 actors. Actors are bound to hosts, representing where
the actors’ actions take place. Each actor is controllable remotely thanks
to an RPC mechanism. A single actor is automatically spawned per user
process by default. This is not limiting, as actors can spawn other actors
— e.g., here, actors 1 and 2 are part of the same system process. . . . 107

7.2 Representation of the usage of sgwrap on a simple application com-
posed of two processes. The left side shows how processes communicate
usually — without sgwrap. On the right side, communications are simu-
lated using Remote SimGrid. This is done by sgwrap, which intercepts
calls to the BSD socket API and calls Remote SimGrid accordingly. . . . 110

8.1 The different level of reproducibility in regard to the development
lifecycle: Variation requires to enclose the development environment
and to provide a way to modify it while keeping reproducibility. 119

List of Figures A11

List of Tables

2.1 Experiment classes depending on the application and the platform (real
or model) [GJQ09]. 11

2.2 Comparison of five open source simulators for the simulation of RJMS. 15

3.1 List of the clusters used for replay and their important characteristics. . 34

5.1 Mean runtime of all PDGEMM executions for each configuration (num-
ber of subdivisions, interference patterns and broadcast types) on Para-
vance. The last column is the percentage of increase compared to the
execution of the same category without interference. 72

5.2 Mean runtime of all PDGEMM executions for each configurations (num-
ber of subdivisions, interference patterns and broadcast types) on
Grisou. The last column is the percentage of increase compared to
the execution of the same category without interference. 76

5.3 Predicted runtime for the ptask model under each interference pattern,
and two methods for simulating tcpkali. The obtained results are
identical for the two methods: Using a ptask or the SimGrid’s s4u
API doesn’t impact the simulation’s results. The last column is the
percentage of increase compared to the execution of the same category
without interference. 81

A13

Bibliography

[@ceph] ceph. https://ceph.io/ (cit. on p. 129).

[@cwrap] cwrap, Testing your full software stack on a single machine. 2019 (cit. on
p. 108).

[@elfhook] Redirecting functions in shared ELF libraries. Redirecting functions in shared
ELF libraries. 2013 (cit. on p. 104).

[@evalys] Evalys. https://github.com/oar-team/evalys (cit. on p. 100).

[@kubernetes] Kubernetes. https://kubernetes.io/ (cit. on p. 100).

[@LIEF] LIEF. https://lief.quarkslab.com/doc/latest/Intro.html (cit. on
p. 104).

[@rsg] Remote SimGrid (git repository). 2019 (cit. on p. 106).

[@simtercept] Remote SimGrid (git repository). 2019 (cit. on p. 110).

[AAC09] Jason Ansel, Kapil Arya, and Gene Cooperman. „DMTCP: Transparent Check-
pointing for Cluster Computations and the Desktop“. In: 2009 IEEE Inter-
national Symposium on Parallel & Distributed Processing (IPDPS’09). IEEE.
Rome, Italy, 2009, pp. 1–12 (cit. on p. 108).

[AGZ94] Ramesh C. Agarwal, Fred G. Gustavson, and Mohammad Zubair. „A high-
performance matrix-multiplication algorithm on a distributed-memory paral-
lel computer, using overlapped communication“. In: IBM Journal of Research
and Development 38.6 (1994), pp. 673–682 (cit. on p. 64).

[Ahn+20] Dong H. Ahn, Ned Bass, Albert Chu, et al. „Flux: Overcoming scheduling
challenges for exascale workflows“. In: Future Gener. Comput. Syst. 110
(2020), pp. 202–213 (cit. on pp. 18, 25).

[Álv+17] Gonzalo Pedro Rodrigo Álvarez, Erik Elmroth, Per-Olov Östberg, and La-
vanya Ramakrishnan. „Enabling Workflow-Aware Scheduling on HPC Sys-
tems“. In: Proceedings of the 26th International Symposium on High-Performance
Parallel and Distributed Computing, HPDC 2017, Washington, DC, USA, June
26-30, 2017. Ed. by H. Howie Huang, Jon B. Weissman, Adriana Iamnitchi,
and Alexandru Iosup. ACM, 2017, pp. 3–14 (cit. on p. 22).

[Ana+12] True Elasticity in Multi-Tenant Data-Intensive Compute Clusters. Oct. 2012
(cit. on p. 27).

[Asc+18] M. Asch, Terry Moore, Rosa M. Badia, et al. „Big data and extreme-scale
computing“. In: Int. J. High Perform. Comput. Appl. 32.4 (2018), pp. 435–
479 (cit. on pp. 2, 128).

A15

https://ceph.io/
https://github.com/oar-team/evalys
https://kubernetes.io/
https://lief.quarkslab.com/doc/latest/Intro.html

[Bai+91] David H. Bailey, Eric Barszcz, John T. Barton, et al. „The Nas Parallel
Benchmarks“. In: Int. J. High Perform. Comput. Appl. 5.3 (1991), pp. 63–73
(cit. on pp. 18, 55, 128).

[Bal+13] Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier, et al. „Adding
Virtualization Capabilities to the Grid’5000 Testbed“. In: Cloud Computing
and Services Science. Ed. by Ivan I. Ivanov, Marten van Sinderen, Frank
Leymann, and Tony Shan. Vol. 367. Communications in Computer and
Information Science. Springer International Publishing, 2013, pp. 3–20
(cit. on pp. 17, 123).

[Bea+20] Olivier Beaumont, Louis-Claude Canon, Lionel Eyraud-Dubois, et al. „Schedul-
ing on Two Types of Resources: A Survey“. In: ACM Comput. Surv. 53.3
(2020), 56:1–56:36 (cit. on p. 2).

[Béd+13] Paul Bédaride, Augustin Degomme, Stéphane Genaud, et al. „Toward Bet-
ter Simulation of MPI Applications on Ethernet/TCP Networks“. In: High
Performance Computing Systems. Performance Modeling, Benchmarking and
Simulation - 4th International Workshop, PMBS 2013, Denver, CO, USA,
November 18, 2013. Revised Selected Papers. Ed. by Stephen A. Jarvis, Steven
A. Wright, and Simon D. Hammond. Vol. 8551. Lecture Notes in Computer
Science. Springer, 2013, pp. 158–181 (cit. on p. 79).

[Bha+13] Abhinav Bhatele, Kathryn Mohror, Steve H. Langer, and Katherine E. Isaacs.
„There goes the neighborhood: performance degradation due to nearby jobs“.
In: International Conference for High Performance Computing, Networking,
Storage and Analysis, SC’13, Denver, CO, USA - November 17 - 21, 2013. Ed.
by William Gropp and Satoshi Matsuoka. ACM, 2013, 41:1–41:12 (cit. on
pp. 2, 8, 44).

[Boe15] Carl Boettiger. „An introduction to Docker for reproducible research“. In:
ACM SIGOPS Operating Systems Review 49.1 (2015), pp. 71–79 (cit. on
p. 121).

[Bro+18] Kevin A. Brown, Nikhil Jain, Satoshi Matsuoka, Martin Schulz, and Abhinav
Bhatele. „Interference between I/O and MPI Traffic on Fat-tree Networks“.
In: Proceedings of the 47th International Conference on Parallel Processing,
ICPP 2018, Eugene, OR, USA, August 13-16, 2018. ACM, 2018, 7:1–7:10
(cit. on p. 44).

[BSS13] Arun Balasubramanian, Alan Sussman, and Norman M. Sadeh. „Decen-
tralized Preemptive Scheduling Across Heterogeneous Multi-core Grid Re-
sources“. In: Job Scheduling Strategies for Parallel Processing - 17th Inter-
national Workshop, JSSPP 2013, Boston, MA, USA, May 24, 2013 Revised
Selected Papers. Ed. by Narayan Desai and Walfredo Cirne. Vol. 8429. Lecture
Notes in Computer Science. Springer, 2013, pp. 22–41 (cit. on p. 27).

[Cam11] Pedro Antonio Madeira de Campos Velho. „Evaluation de précision et vitesse
de simulation pour des systèmes de calcul distribué à large échelle. (Accu-
rate and Fast Simulations of Large-Scale Distributed Computing Systems)“.
PhD thesis. Grenoble Alpes University, France, 2011 (cit. on p. 46).

A16 Bibliography

[Cap+05] Nicolas Capit, Georges Da Costa, Yiannis Georgiou, et al. „A batch scheduler
with high level components“. In: 5th International Symposium on Cluster
Computing and the Grid (CCGrid 2005), 9-12 May, 2005, Cardiff, UK. IEEE
Computer Society, 2005, pp. 776–783 (cit. on p. 22).

[Cas+14] Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and
Frédéric Suter. „Versatile, Scalable, and Accurate Simulation of Distributed
Applications and Platforms“. In: Journal of Parallel and Distributed Comput-
ing 74.10 (June 2014), pp. 2899–2917 (cit. on pp. 16, 19, 45, 46, 105).

[Cha+99] Steve J. Chapin, Walfredo Cirne, Dror G. Feitelson, et al. „Benchmarks and
Standards for the Evaluation of Parallel Job Schedulers“. In: Job Scheduling
Strategies for Parallel Processing, IPPS/SPDP’99 Workshop, JSSPP’99, San
Juan, Puerto Rico, April 16, 1999, Proceedings. Ed. by Dror G. Feitelson and
Larry Rudolph. Vol. 1659. Lecture Notes in Computer Science. Springer,
1999, pp. 67–90 (cit. on p. 15).

[Cho+13] Brian Cho, Muntasir Rahman, Tej Chajed, et al. „Natjam: Design and Evalu-
ation of Eviction Policies for Supporting Priorities and Deadlines in Mapre-
duce Clusters“. In: Proceedings of the 4th Annual Symposium on Cloud Com-
puting. SOCC ’13. Santa Clara, California: ACM, 2013, 6:1–6:17 (cit. on
p. 27).

[CLH19] Tom Cornebize, Arnaud Legrand, and Franz C. Heinrich. „Fast and Faith-
ful Performance Prediction of MPI Applications: the HPL Case Study“. In:
2019 IEEE International Conference on Cluster Computing, CLUSTER 2019,
Albuquerque, NM, USA, September 23-26, 2019. 2019, pp. 1–11 (cit. on
p. 79).

[Cru+19] Eduardo H. M. Cruz, Matthias Diener, Laércio Lima Pilla, and Philippe O. A.
Navaux. „EagerMap: A Task Mapping Algorithm to Improve Communication
and Load Balancing in Clusters of Multicore Systems“. In: TOPC 5.4 (2019),
17:1–17:24 (cit. on pp. 22, 43).

[CW15] Ludovic Courtès and Ricardo Wurmus. „Reproducible and User-Controlled
Software Environments in HPC with Guix“. In: Euro-Par 2015: Parallel
Processing Workshops. Ed. by Sascha Hunold, Alexandru Costan, Domingo
Giménez, et al. Cham: Springer International Publishing, 2015, pp. 579–591
(cit. on p. 120).

[DDS15] Adrien Devresse, Fabien Delalondre, and Felix Schürmann. „Nix based fully
automated workflows and ecosystem to guarantee scientific result repro-
ducibility across software environments and systems“. In: Proceedings of the
3rd International Workshop on Software Engineering for High Performance
Computing in Computational Science and Engineering. ACM. 2015, pp. 25–31
(cit. on p. 122).

[Deg+17] Augustin Degomme, Arnaud Legrand, George S. Markomanolis, et al. „Sim-
ulating MPI Applications: The SMPI Approach“. In: IEEE Trans. Parallel
Distrib. Syst. 28.8 (2017), pp. 2387–2400 (cit. on p. 47).

Bibliography A17

[Des+11] Frederic Desprez, George S. Markomanolis, Martin Quinson, and Frédéric
Suter. „Assessing the Performance of MPI Applications through Time-Independent
Trace Replay“. In: 2011 International Conference on Parallel Processing Work-
shops, ICPPW 2011, Taipei, Taiwan, Sept. 13-16, 2011. Ed. by Jang-Ping
Sheu and Cho-Li Wang. IEEE Computer Society, 2011, pp. 467–476 (cit. on
p. 47).

[Don+11] Jack Dongarra, Pete Beckman, Terry Moore, et al. „The International Ex-
ascale Software Project roadmap“. In: The International Journal of High
Performance Computing Applications 25.1 (Jan. 2011), pp. 3–60 (cit. on
pp. 1, 25).

[Dut+16] Pierre-François Dutot, Michael Mercier, Millian Poquet, and Olivier Richard.
„Batsim: A Realistic Language-Independent Resources and Jobs Management
Systems Simulator“. In: Job Scheduling Strategies for Parallel Processing -
19th and 20th International Workshops, JSSPP 2015, Hyderabad, India, May
26, 2015 and JSSPP 2016, Chicago, IL, USA, May 27, 2016, Revised Selected
Papers. Ed. by Narayan Desai and Walfredo Cirne. Vol. 10353. Lecture Notes
in Computer Science. Springer, 2016, pp. 178–197 (cit. on pp. 12, 14, 22).

[Eme13] Joseph Emeras. „Workload Traces Analysis and Replay in Large Scale Dis-
tributed Systems“. Theses. Université de Grenoble, Oct. 2013 (cit. on pp. 2,
7, 43).

[Fau+20] Adrien Faure, Giorgio Lucarelli, Olivier Richard, and Denis Trystram. „Online
Scheduling with Redirection for Parallel Jobs“. In: 2020 IEEE International
Parallel and Distributed Processing Symposium Workshops, IPDPSW 2020,
New Orleans, LA, USA, May 18-22, 2020. IEEE, 2020, pp. 326–329 (cit. on
p. 26).

[FC07] Kayo Fujiwara and Henri Casanova. „Speed and accuracy of network simu-
lation in the SimGrid framework“. In: Proceedings of the 2nd International
Conference on Performance Evaluation Methodolgies and Tools, VALUETOOLS
2007, Nantes, France, October 22-27, 2007. Ed. by Peter W. Glynn. ACM
International Conference Proceeding Series. ICST/ACM, 2007, p. 12 (cit. on
p. 46).

[Fei01a] Dror G. Feitelson. „Metrics for Parallel Job Scheduling and Their Conver-
gence“. In: Job Scheduling Strategies for Parallel Processing. Ed. by Dror G.
Feitelson and Larry Rudolph. Berlin, Heidelberg: Springer Berlin Heidelberg,
2001, pp. 188–205 (cit. on pp. 6, 26).

[Fei01b] Dror G. Feitelson. „Metrics for Parallel Job Scheduling and Their Conver-
gence“. In: Job Scheduling Strategies for Parallel Processing, 7th International
Workshop, JSSPP 2001, Cambridge, MA, USA, June 16, 2001, Revised Papers.
2001, pp. 188–206 (cit. on p. 26).

[Fei15a] Dror G Feitelson. „From repeatability to reproducibility and corroboration“.
In: ACM SIGOPS Operating Systems Review 49.1 (2015), pp. 3–11 (cit. on
p. 117).

[Fei15b] Dror G. Feitelson. Workload Modeling for Computer Systems Performance
Evaluation. Cambridge University Press, 2015 (cit. on pp. 7, 54).

[Fei19] Dror Feitelson. Parallel Workloads Archive. 2019 (cit. on pp. 7, 33).

A18 Bibliography

[FOH87] Geoffrey C. Fox, Steve W. Otto, and Anthony J. G. Hey. „Matrix algorithms
on a hypercube I: Matrix multiplication“. In: Parallel Computing 4.1 (1987),
pp. 17–31 (cit. on p. 64).

[FPR18] Adrien Faure, Millian Poquet, and Olivier Richard. „Évaluation d’algorithmes
d’ordonnancement par simulation réaliste“. working paper or preprint. Apr.
2018 (cit. on p. 45).

[Fu+15] Xianjin Fu, Zhenbang Chen, Yufeng Zhang, et al. „MPISE: Symbolic execu-
tion of MPI programs“. In: 2015 IEEE 16th International Symposium on High
Assurance Systems Engineering. IEEE. 2015, pp. 181–188 (cit. on p. 107).

[FW98] D. G. Feitelson and A. M. Weil. „Utilization and predictability in scheduling
the IBM SP2 with backfilling“. In: Proceedings of the First Merged Inter-
national Parallel Processing Symposium and Symposium on Parallel and
Distributed Processing. Mar. 1998, pp. 542–546 (cit. on p. 28).

[Gal+20] Cristian Galleguillos, Zeynep Kiziltan, Alessio Netti, and Ricardo Soto. „Ac-
caSim: a customizable workload management simulator for job dispatching
research in HPC systems“. In: Cluster Computing 23.1 (2020), pp. 107–122
(cit. on pp. 8, 14, 44).

[Gau+15] Éric Gaussier, David Glesser, Valentin Reis, and Denis Trystram. „Improv-
ing backfilling by using machine learning to predict running times“. In:
Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC 2015, Austin, TX, USA, November
15-20, 2015. 2015, 64:1–64:10 (cit. on p. 33).

[Gau+18] E. Gaussier, J. Lelong, V. Reis, and D. Trystram. „Online Tuning of EASY-
Backfilling using Queue Reordering Policies“. In: IEEE Transactions on Par-
allel and Distributed Systems 29.10 (Oct. 2018), pp. 2304–2316 (cit. on
p. 28).

[Geo+15] Yiannis Georgiou, David Glesser, Krzysztof Rzadca, and Denis Trystram.
„A Scheduler-Level Incentive Mechanism for Energy Efficiency in HPC“.
In: 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGrid 2015, Shenzhen, China, May 4-7, 2015. IEEE Computer
Society, 2015, pp. 617–626 (cit. on p. 19).

[Geo+17] Yiannis Georgiou, Emmanuel Jeannot, Guillaume Mercier, and Adèle Vil-
liermet. „Topology-aware resource management for HPC applications“. In:
Proceedings of the 18th International Conference on Distributed Computing
and Networking, Hyderabad, India, January 5-7, 2017. ACM, 2017, p. 17
(cit. on p. 22).

[Geo10] Yiannis Ioannis Georgiou. „Contributions for Resource and Job Management
in High Performance Computing“. PhD. Université de Grenoble, Nov. 2010
(cit. on p. 25).

[GF15] David Glesser and Adrien Faure. Simunix, a large scale platform simulator.
Atos. Nov. 19, 2015. URL: https://slurm.schedmd.com/SLUG16/slug16_
simunix.pdf (visited on Aug. 17, 2020) (cit. on pp. 94, 99).

Bibliography A19

https://slurm.schedmd.com/SLUG16/slug16_simunix.pdf
https://slurm.schedmd.com/SLUG16/slug16_simunix.pdf

[GH12] Yiannis Georgiou and Matthieu Hautreux. „Evaluating Scalability and Ef-
ficiency of the Resource and Job Management System on Large HPC Clus-
ters“. In: Job Scheduling Strategies for Parallel Processing, 16th International
Workshop, JSSPP 2012, Shanghai, China, May 25, 2012. Revised Selected
Papers. Ed. by Walfredo Cirne, Narayan Desai, Eitan Frachtenberg, and Uwe
Schwiegelshohn. Vol. 7698. Lecture Notes in Computer Science. Springer,
2012, pp. 134–156 (cit. on p. 20).

[GJQ09] Jens Gustedt, Emmanuel Jeannot, and Martin Quinson. „Experimental
Methodologies for Large-Scale Systems: a Survey“. In: Parallel Process. Lett.
19.3 (2009), pp. 399–418 (cit. on p. 11).

[Gle16] David Glesser. „Road to exascale : improving scheduling performances and
reducing energy consumption with the help of end-users“. PhD. Université
Grenoble Alpes, Oct. 2016 (cit. on pp. 6, 25, 94).

[Hin19] Konrad Hinsen. „Dealing With Software Collapse“. In: Comput. Sci. Eng.
21.3 (2019), pp. 104–108 (cit. on pp. 9, 117).

[IH09] Teerawat Issariyakul and Ekram Hossain. „Introduction to Network Sim-
ulator 2 (NS2)“. In: Introduction to Network Simulator NS2. Boston, MA:
Springer US, 2009, pp. 1–18 (cit. on p. 45).

[JDC18] Ana Jokanovic, Marco D’Amico, and Julita Corbalán. „Evaluating SLURM
Simulator with Real-Machine SLURM and Vice Versa“. In: 2018 IEEE/ACM
Performance Modeling, Benchmarking and Simulation of High Performance
Computer Systems, PMBS@SC 2018, Dallas, TX, USA, November 12, 2018.
IEEE, 2018, pp. 72–82 (cit. on pp. 12, 21, 22, 92).

[Jim+17] Ivo Jimenez, Michael Sevilla, Noah Watkins, et al. „The popper conven-
tion: Making reproducible systems evaluation practical“. In: Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2017 IEEE Interna-
tional. IEEE. 2017, pp. 1561–1570 (cit. on p. 121).

[JMT14] Emmanuel Jeannot, Guillaume Mercier, and Francois Tessier. „Process Place-
ment in Multicore Clusters: Algorithmic Issues and Practical Techniques“.
In: IEEE Trans. Parallel Distrib. Syst. 25.4 (2014), pp. 993–1002 (cit. on
p. 43).

[Kas19] Ayham Kassab. „Optimization of parallel scheduling and the use of re-
newable energy sources to power computing centers. (Optimisation de
l’ordonnancement de calculs parallèles et de l’engagement de sources
d’énergie renouvelable pour l’alimentation des centres de calcul)“. PhD
thesis. University Bourgogne Franche-Comté, France, 2019 (cit. on p. 2).

[Kea+19] Kate Keahey, Joe Mambretti, Paul Ruth, and Dan Stanzione. „Chameleon: A
Large-Scale, Deeply Reconfigurable Testbed for Computer Science Research“.
In: 27th IEEE International Conference on Network Protocols, ICNP 2019,
Chicago, IL, USA, October 8-10, 2019. IEEE, 2019, pp. 1–2 (cit. on p. 123).

[KOB00] Jacques Chassin de Kergommeaux, Benhur de Oliveira Stein, and Pierre-Eric
Bernard. „Pajé, an interactive visualization tool for tuning multi-threaded
parallel applications“. In: Parallel Comput. 26.10 (2000), pp. 1253–1274
(cit. on p. 55).

A20 Bibliography

[KP00] Bala Kalyanasundaram and Kirk Pruhs. „Speed is as powerful as clairvoy-
ance“. In: J. ACM 47.4 (2000), pp. 617–643 (cit. on p. 25).

[KSS19] Dalibor Klusácek, Mehmet Soysal, and Frédéric Suter. „Alea - Complex
Job Scheduling Simulator“. In: Parallel Processing and Applied Mathematics
- 13th International Conference, PPAM 2019, Bialystok, Poland, September
8-11, 2019, Revised Selected Papers, Part II. Ed. by Roman Wyrzykowski, Ewa
Deelman, Jack J. Dongarra, and Konrad Karczewski. Vol. 12044. Lecture
Notes in Computer Science. Springer, 2019, pp. 217–229 (cit. on pp. 8, 14).

[Lam+] Chris Lamb, Holger Levsen, Mattia Rizzolo, and Vagrant Cascadian. repro-
ducible builds. https://reproducible-builds.org/ (cit. on p. 123).

[Lar20] Théo Larue. „Development and evaluation of a Kubernetes cluster simulator
based on Batsim“. MA thesis. Ensimag, Grenoble INP, Grenoble, France,
2020 (cit. on p. 100).

[Law+01] Steve Lawrence, David M Pennock, Gary William Flake, et al. „Persistence
of web references in scientific research“. In: Computer 2 (2001), pp. 26–31
(cit. on p. 122).

[Leg15] Arnaud Legrand. Scheduling for Large Scale Distributed Computing Systems:
Approaches and Performance Evaluation Issues. 2015 (cit. on pp. 20, 45, 46).

[LF03] Uri Lublin and Dror G. Feitelson. „The workload on parallel supercomput-
ers: modeling the characteristics of rigid jobs“. In: Journal of Parallel and
Distributed Computing 63.11 (2003), pp. 1105–1122 (cit. on p. 7).

[LMT17] G. Lucarelli, F. Mendonca, and D. Trystram. „A New On-line Method for
Scheduling Independent Tasks“. In: 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID). May 2017,
pp. 140–149 (cit. on pp. 26, 29).

[LST16] Giorgio Lucarelli, Abhinav Srivastav, and Denis Trystram. „From Preemptive
to Non-preemptive Scheduling Using Rejections“. In: Computing and Combi-
natorics - 22nd International Conference, COCOON 2016, Ho Chi Minh City,
Vietnam, August 2-4, 2016, Proceedings. 2016, pp. 510–519 (cit. on pp. 29,
126).

[LTZ19] Arnaud Legrand, Denis Trystram, and Salah Zrigui. „Adapting Batch Schedul-
ing to Workload Characteristics: What can we expect From Online Learn-
ing?“ In: IPDPS 2019 - 33rd IEEE International Parallel & Distributed Process-
ing Symposium. rio de janeiro, Brazil: IEEE, May 2019, pp. 1–10 (cit. on
p. 33).

[Luc+15] Giorgio Lucarelli, Fernando Machado Mendonca, Denis Trystram, and
Frédéric Wagner. „Contiguity and Locality in Backfilling Scheduling“. In:
15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-
ing, CCGrid 2015, Shenzhen, China, May 4-7, 2015. IEEE Computer Society,
2015, pp. 586–595 (cit. on p. 54).

[Luc+16] Giorgio Lucarelli, Nguyen Kim Thang, Abhinav Srivastav, and Denis Trys-
tram. „Online Non-preemptive Scheduling in a Resource Augmentation
Model based on Duality“. In: European Symposium on Algorithms (ESA
2016). Vol. 57. 63. Aarhus, Denmark, Aug. 2016, pp. 1–17 (cit. on p. 30).

Bibliography A21

https://reproducible-builds.org/

[Luc11] Alejandro Lucero. „Simulation of batch scheduling using real production-
ready software tools“. In: Proceedings of the 5th IBERGRID (2011) (cit. on
pp. 21, 92).

[Mer+17] Michael Mercier, David Glesser, Yiannis Georgiou, and Olivier Richard. „Big
data and HPC collocation: Using HPC idle resources for Big Data analytics“.
In: 2017 IEEE International Conference on Big Data, BigData 2017, Boston,
MA, USA, December 11-14, 2017. 2017, pp. 347–352 (cit. on pp. 17, 18).

[Mer19] Michael Mercier. „Contribution to High Performance Computing and Big
Data Infrastructure Convergence“. 2019GREAM031. PhD thesis. 2019 (cit.
on pp. 2, 27, 63, 128).

[MF01] A. W. Mu’alem and D. G. Feitelson. „Utilization, predictability, workloads,
and user runtime estimates in scheduling the IBM SP2 with backfilling“.
In: IEEE Transactions on Parallel and Distributed Systems 12.6 (June 2001),
pp. 529–543 (cit. on pp. 27, 28).

[MFR18] Michael Mercier, Adrien Faure, and Olivier Richard. „Considering the Devel-
opment Workflow to Achieve Reproducibility with Variation“. In: SC 2018 -
Workshop: ResCuE-HPC. Dallas, United States, Nov. 2018, pp. 1–5 (cit. on
p. 118).

[Mub+17] Misbah Mubarak, Christopher D. Carothers, Robert B. Ross, and Philip H.
Carns. „Enabling Parallel Simulation of Large-Scale HPC Network Systems“.
In: IEEE Trans. Parallel Distrib. Syst. 28.1 (2017), pp. 87–100 (cit. on p. 45).

[New+15] Chris Newcombe, Tim Rath, Fan Zhang, et al. „How Amazon Web Services
Uses Formal Methods“. In: Commun. ACM 58.4 (Mar. 2015), pp. 66–73
(cit. on p. 107).

[NL16] Linus Nyman and Mikael Laakso. „Notes on the History of Fork and Join“.
In: IEEE Ann. Hist. Comput. 38.3 (2016), pp. 84–87 (cit. on p. 112).

[Pol+18] Samuel D. Pollard, Nikhil Jain, Stephen Herbein, and Abhinav Bhatele.
„Evaluation of an interference-free node allocation policy on fat-tree clus-
ters“. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, SC 2018, Dallas, TX, USA,
November 11-16, 2018. IEEE, 2018, 26:1–26:13 (cit. on pp. 20, 92).

[Poq17] Millian Poquet. „Simulation approach for resource management. (Approche
par la simulation pour la gestion de ressources)“. PhD thesis. Grenoble
Alpes University, France, 2017 (cit. on pp. 2, 14, 32, 45, 50).

[PSM10] Andres Perez-Garcia, Christos Siaterlis, and Marcelo Masera. „Designing
Repeatable Experiments on an Emulab Testbed“. In: Broadband Communica-
tions, Networks, and Systems - 7th International ICST Conference, BROAD-
NETS 2010, Athens, Greece, October 25-27, 2010, Revised Selected Papers.
Ed. by Ioannis Tomkos, Christos Bouras, Georgios Ellinas, Panagiotis De-
mestichas, and Prasun Sinha. Vol. 66. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineer-
ing. Springer, 2010, pp. 28–39 (cit. on p. 123).

[Pul09] Kevin Pulo. „Fun with LD_PRELOAD“. In: linux. conf. au. Vol. 153. 2009
(cit. on p. 103).

A22 Bibliography

[Qia+17] Peixin Qiao, Xin Wang, Xu Yang, Yuping Fan, and Zhiling Lan. „Preliminary
Interference Study About Job Placement and Routing Algorithms in the Fat-
Tree Topology for HPC Applications“. In: 2017 IEEE International Conference
on Cluster Computing, CLUSTER 2017, Honolulu, HI, USA, September 5-8,
2017. IEEE Computer Society, 2017, pp. 641–642 (cit. on p. 2).

[RH10] George F. Riley and Thomas R. Henderson. „The ns-3 Network Simulator“.
In: Modeling and Tools for Network Simulation. Ed. by Klaus Wehrle, Mesut
Güneş, and James Gross. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 15–34 (cit. on p. 108).

[Ric+15] Robert Ricci, Gary Wong, Leigh Stoller, et al. „Apt: A platform for repeatable
research in computer science“. In: ACM SIGOPS Operating Systems Review
49.1 (2015), pp. 100–107 (cit. on p. 121).

[Rod+17] Gonzalo P. Rodrigo, Erik Elmroth, Per-Olov Östberg, and Lavanya Ramakr-
ishnan. „ScSF: A Scheduling Simulation Framework“. In: Job Scheduling
Strategies for Parallel Processing - 21st International Workshop, JSSPP 2017,
Orlando, FL, USA, June 2, 2017, Revised Selected Papers. Ed. by Dalibor
Klusácek, Walfredo Cirne, and Narayan Desai. Vol. 10773. Lecture Notes in
Computer Science. Springer, 2017, pp. 152–173 (cit. on pp. 21, 92).

[Sar+13] Luc Sarzyniec, Tomasz Buchert, Emmanuel Jeanvoine, and Lucas Nuss-
baum. „Design and Evaluation of a Virtual Experimental Environment for
Distributed Systems“. In: 21st Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, PDP 2013, Belfast, United King-
dom, February 27 - March 1, 2013. IEEE Computer Society, 2013, pp. 172–
179 (cit. on pp. 19, 92).

[Smi+18] Staci A. Smith, Clara E. Cromey, David K. Lowenthal, et al. „Mitigating
inter-job interference using adaptive flow-aware routing“. In: Proceedings of
the International Conference for High Performance Computing, Networking,
Storage, and Analysis, SC 2018, Dallas, TX, USA, November 11-16, 2018.
IEEE, 2018, 27:1–27:15 (cit. on pp. 2, 8).

[Sul+08] Anthony Sulistio, Uros Cibej, Srikumar Venugopal, Borut Robic, and Rajku-
mar Buyya. „A toolkit for modelling and simulating data Grids: an extension
to GridSim“. In: Concurr. Comput. Pract. Exp. 20.13 (2008), pp. 1591–1609
(cit. on pp. 16, 19, 46).

[Tan+11] W. Tang, Z. Lan, N. Desai, D. Buettner, and Y. Yu. „Reducing Fragmentation
on Torus-Connected Supercomputers“. In: 2011 IEEE International Parallel
Distributed Processing Symposium. May 2011, pp. 828–839 (cit. on p. 33).

[Taz+13] Hajime Tazaki, Frédéric Urbani, Emilio Mancini, et al. „Direct Code Exe-
cution: Revisiting Library OS Architecture for Reproducible Network Ex-
periments“. In: The 9th International Conference on emerging Networking
EXperiments and Technologies (CoNEXT). Santa Barbara, United States, Dec.
2013 (cit. on p. 108).

Bibliography A23

[TEF05] Dan Tsafrir, Yoav Etsion, and Dror G. Feitelson. „Modeling User Runtime
Estimates“. In: Job Scheduling Strategies for Parallel Processing, 11th Interna-
tional Workshop, JSSPP 2005, Cambridge, MA, USA, June 19, 2005, Revised
Selected Papers. Ed. by Dror G. Feitelson, Eitan Frachtenberg, Larry Rudolph,
and Uwe Schwiegelshohn. Vol. 3834. Lecture Notes in Computer Science.
Springer, 2005, pp. 1–35 (cit. on p. 7).

[Ull75] J. D. Ullman. „NP-complete Scheduling Problems“. In: J. Comput. Syst. Sci.
10.3 (June 1975), pp. 384–393 (cit. on p. 27).

[Vel+13] Pedro Velho, Lucas Mello Schnorr, Henri Casanova, and Arnaud Legrand.
„On the validity of flow-level tcp network models for grid and cloud simu-
lations“. In: ACM Trans. Model. Comput. Simul. 23.4 (2013), 23:1–23:26
(cit. on p. 79).

[VL09] Pedro Velho and Arnaud Legrand. „Accuracy study and improvement of
network simulation in the SimGrid framework“. In: Proceedings of the 2nd
International Conference on Simulation Tools and Techniques for Communica-
tions, Networks and Systems, SimuTools 2009, Rome, Italy, March 2-6, 2009.
Ed. by Olivier Dalle, Gabriel A. Wainer, L. Felipe Perrone, and Giovanni Stea.
ICST/ACM, 2009, p. 13 (cit. on p. 46).

[Wan+14] Lei Wang, Jianfeng Zhan, Chunjie Luo, et al. „BigDataBench: A big data
benchmark suite from internet services“. In: 20th IEEE International Sym-
posium on High Performance Computer Architecture, HPCA 2014, Orlando,
FL, USA, February 15-19, 2014. IEEE Computer Society, 2014, pp. 488–499
(cit. on p. 18).

[Wur+18] Ricardo Wurmus, Bora Uyar, Brendan Osberg, et al. „Reproducible genomics
analysis pipelines with GNU Guix“. In: bioRxiv (2018). eprint: https://www.
biorxiv.org/content/early/2018/04/21/298653.full.pdf (cit. on
p. 122).

[ZF14] Netanel Zakay and Dror G. Feitelson. „Preserving User Behavior Character-
istics in Trace-Based Simulation of Parallel Job Scheduling“. In: IEEE 22nd
International Symposium on Modelling, Analysis & Simulation of Computer
and Telecommunication Systems, MASCOTS 2014, Paris, France, September
9-11, 2014. IEEE Computer Society, 2014, pp. 51–60 (cit. on pp. 12, 16).

A24 Bibliography

https://www.biorxiv.org/content/early/2018/04/21/298653.full.pdf
https://www.biorxiv.org/content/early/2018/04/21/298653.full.pdf

Abstract
High-Performance Computing (HPC) provides the computational power dedicated to solving complex problems
of our society. HPC computers are large scale and distributed infrastructures composed of several thousands
of computing cores. The management of theses systems is left to unique software: the Resource and Job
Management System (RJMS). The objective of the RJMS is multiple: Managing the physical infrastructure,
and handling the user requests to access to the computing power. The scheduling algorithm is the cornerstone
of the RJMS, it decides where and when the user’s jobs will be executed. Scheduling is a difficult problem; to
manage large scale platforms RJMS needs to dispose of efficient yet scalable scheduling heuristics Evaluating
and testing new scheduling algorithms is crucial before releasing it in production. Any failure can have a
dramatic impact on the HPC platform leading to wasted time, energy, and resources. The lack of a platform
dedicated experiments and tests compels RJMS designers and HPC center’s administrators to use different
tools and methodologies to evaluate new algorithms.
In the first part of this dissertation, we present and evaluate a new scheduling heuristics with job redirection.
The evaluation is done using a large simulation campaign, it results that by redirecting jobs can improve
the efficiency of the scheduling. In the second part, we focus on and extend the tools and methodologies
available to experiment with RJMS. This part is twofold: Firstly, we propose to extend scheduling simulations
with job models to simulate network contention between jobs. Secondly, we propose new tools that enable
experiment with production RJMS without the need for an HPC platform. This dissertation aims to broaden
the experimental landscape of tools and methodologies to experiment with RJMS and therefore help the
release in the production of new scheduling algorithms.

Résumé
Les superordinateurs sont des systèmes mutualisant la puissance de milliers de coeurs de calculs dédiés à la
résolution des problèmes compliqués de notre société. Le gestionnaire de ressources est un système distribué
et complexe chargé de la gestion de ses ressources de calculs. Son rôle est multiple : Gérer la plateforme
physique et traiter les requêtes d’accès des utilisateurs au superordinateur. La pierre angulaire du gestionnaire
de ressources est son algorithme d’ordonnancement des requêtes des utilisateurs. L’ordonnancement est un
problème difficile ; pour gérer efficacement un superordinateur le gestionnaire de ressources doit disposer
d’heuristiques d’ordonnancement efficaces permettant de prendre des décisions pertinentes sur des milliers de
ressources de calculs. Évaluer et tester de nouvelles heuristiques est fondamental avant de pouvoir les utiliser
dans un système en production. Toute panne induite par une nouvelle politique peut avoir des conséquences
importantes sur la qualité de service du superordinateur. Il est ainsi nécessaire de disposer d’outils et méthodes
dédiés à l’évaluation des algorithmes d’ordonnancement.
La première partie de ce document présente un nouvel algorithm d’ordonnancement, ainsi que son évaluation
par le biais de la simulation. L’algorithme en question repose sur la possibilité de rediriger les programmes des
utilisateurs en cours d’exécution. L’évaluation est réalisée par le biais d’une large campagne de simulation, et
montre que rediriger des programmes permet d’améliorer les performances de l’ordonnancement. L’objectif
principal de la seconde partie de ce document est de proposer et développer de nouveaux outils et méthodes
pour l’évaluation des gestionnaires de ressources. Cette seconde partie est elle même divisée en deux arcs : Nous
proposons dans un premier temps d’étendre les techniques de simulations d’algorithmes d’ordonnancement
avec des modèles dédiés aux programmes permettant ainsi la simulation d’interférences réseaux entre les
différents programmes. Dans un second temps, nous proposons deux nouvelles approches pour créer des
expériences sur un seul ordinateur, en se basant directement sur de vrais gestionnaires de ressources. L’objectif
de ces travaux est d’étendre le paysage expérimental des outils et méthodologies nécessaires à l’évaluation de
nouveaux algorithmes d’ordonnancement.

	Front Matter
	Cover
	Epigraph
	Acknowledgement
	Abstract / Résumé
	Contents

	Main Matter
	1 Introduction
	1.1 Background
	1.2 Resource and Job Management Systems
	1.2.1 Scheduling Heuristics for HPC

	1.3 RJMSs Evaluation: Workloads and Metrics
	1.3.1 Workloads and Metrics
	1.3.2 Methodology for the Evaluation of RJMSs

	1.4 Contributions

	2 Experimental Study of RJMS: Methods and State of the Art
	2.1 Introduction
	2.2 Using RJMS Models
	2.3 Experiment with Real RJMSs
	2.3.1 Real RJMS with a Functional Platform
	2.3.2 RJMS Hybridization

	2.4 Choosing the Adapted Methodology
	2.5 Conclusion

	3 On-line Scheduling with Redirection for Independent Jobs
	3.1 Introduction
	3.2 Definition and Notation
	3.3 Related Work
	3.4 Scheduling Parallel Jobs in HPC Environments
	3.5 Scheduling Parallel Jobs with Redirection
	3.5.1 General Description of the Redirection
	3.5.2 Dealing with Parallel Jobs
	3.5.3 Execution

	3.6 Experimental Settings
	3.6.1 Simulation and Inputs
	3.6.2 The Workloads
	3.6.3 Redirection Parameters: and
	3.6.4 Reproducibility

	3.7 Experimental Results
	3.7.1 Parameters Tuning
	3.7.2 Comparison to EASY Back-filling

	3.8 Conclusion

	4 Scheduling Simulation with Job's Models
	4.1 Introduction
	4.2 The Batsim Approach
	4.2.1 SimGrid
	4.2.2 SimGrid Provided Models
	4.2.3 Batsim: Infrastructure Simulator for Resource Management

	4.3 Job Execution Profiles
	4.3.1 Profile Types
	4.3.2 Profiles Evaluation

	4.4 Conclusion

	5 Ptask Model Validation
	5.1 Introduction
	5.2 Experiment Methodology
	5.3 Parallel Matrix Multiplication (PDGEMM)
	5.3.1 PDGEMM Algorithm
	5.3.2 Matrix Block Subdivision
	5.3.3 PDGEMM Resources Consumption Behavior

	5.4 Real Experimental Setup
	5.4.1 Platform and Nodes Configuration
	5.4.2 PDGEMM and MPI Configuration
	5.4.3 Controlled Interferences
	5.4.4 Monitoring

	5.5 Results and Data Analysis of the Real Executions
	5.5.1 Results Analysis for Paravance
	5.5.2 Results Analysis for Grisou
	5.5.3 Difference Between Grisou and Paravance

	5.6 PDGEMM in Simulation
	5.6.1 SimGrid Platform, Calibration and Interference
	5.6.2 Ptask Generation

	5.7 Comparison between the Ptask Model and Reality
	5.8 Interference Analysis
	5.8.1 Theoretical Interference Model
	5.8.2 Theoretical Model Calibration and Results

	5.9 Discussion
	5.10 Conclusion
	5.10.1 Ptask calibration
	5.10.2 Scheduling Simulations

	6 Study RJMS with the Emulation Approach
	6.1 Introduction
	6.2 The Simunix Approach
	6.2.1 Project Historic
	6.2.2 Simunix Use Case: Slurm Emulation

	6.3 Batsky
	6.4 Discussion
	6.5 Conclusion

	7 Tools for Emulation: Interception, Remote SimGrid and sgwrap
	7.1 Introduction
	7.2 Interception Methods
	7.3 Remote SimGrid
	7.3.1 RSG Simulation Concepts
	7.3.2 Implementation Details
	7.3.3 Related Work

	7.4 C Standard Library Interceptions
	7.4.1 Choosing the Intercepted Functions
	7.4.2 System Time Interception
	7.4.3 BSD Socket Interception
	7.4.4 System Process Interception
	7.4.5 Threads Interception

	7.5 Conclusion

	8 Reproducibility of Experiments with Variations
	8.1 Software Development Workflow and Reproducibility
	8.2 Reproducible Software Environments with Nix
	8.3 Related Work
	8.4 Discussion
	8.5 Conclusion

	9 Conclusion
	9.1 Contributions and Future Work
	9.1.1 Scheduling with Job Redirection
	9.1.2 Simulation Model with Job Resources Consumption
	9.1.3 Experimenting with Real RJMS: Simunix and Batsky
	9.1.4 Reproducibility of Experiments with Variation

	Back Matter
	A Appendix
	A.1 PDGEMM
	A.1.1 Nonblocking Broadcast

	A.2 Reproduce Experiments

	Bibliography
	Back Cover

